
- •§1. Несколько вводных замечаний о предмете физики.
- •§2. Механика
- •2.2. Кинематика движения материальной точки. Характеристики движения.
- •2.3. Вектор скорости. Средняя и мгновенная скорость.
- •2.4. Путь при неравномерном движении.
- •2.6. Криволинейное движение.
- •2.6.1. Ускорение при криволинейном движении (тангенциальное и нормальное ускорение).
- •2.7. Кинематика вращательного движения.
- •2.7.1. Угловая скорость.
- •2.7.2. Угловое ускорение.
- •2.7.3. Связь между линейной и угловой скоростью.
- •§3. Динамика
- •3.2. II закон Ньютона.
- •3.3. III закон Ньютона.
- •3.4. Импульс. Закон сохранения импульса.
- •3.5. Работа и энергия.
- •3.6. Мощность.
- •3.7. Энергия.
- •3.8. Кинетическая энергия тела.
- •3.9. Потенциальное поле сил. Силы консервативные и неконсервативные.
- •3.10. Потенциальная энергия тела в поле сил тяжести (в поле тяготения Земли).
- •3.11. Потенциальная энергия в гравитационном поле (в поле всемирного тяготения).
- •3.12. Потенциальная энергия упруго деформированного тела.
- •3.13. Закон сохранения энергии.
- •§4. Механика твердого тела.
- •4.1. Поступательное движение твердого тела.
- •4.2. Вращательное движение твердого тела.
- •4.3. Момент импульса тела.
- •4.4. Закон сохранения момента импульса.
- •4.5. Основное уравнение динамики вращательного движения.
- •4.6. Кинетическая энергия вращающегося твердого тела.
- •4.7. Работа внешних сил при вращательном движении твердого тела.
- •§5. Гидродинамика
- •5.1. Линии и трубки тока.
- •5.2. Уравнение Бернулли.
- •5.3. Силы внутреннего трения.
- •5.4. Ламинарное и турбулентное течения.
- •5.5. Течение жидкости в круглой трубе.
- •5.6. Движение тел в жидкостях и газах.
- •§6. Всемирное тяготение.
- •6.1. Законы Кеплера.
- •6.2. Опыт Кавендиша.
- •6.3. Напряженность гравитационного поля. Потенциал гравитационного поля.
- •§7. Основы теории относительности.
- •7.1. Принцип относительности.
- •7.2. Постулаты специальной (частной) теории относительности. Преобразования Лоренца
- •7.3. Следствия из преобразований Лоренца.
- •7.4. Интервал между событиями.
- •§8. Колебания.
- •8.1. Общие сведения.
- •8.2. Уравнение гармонического колебательного движения.
- •8.3. Графическое изображение гармонических колебаний. Векторная диаграмма.
- •8.4. Скорость, ускорение и энергия колеблющегося тела.
- •8.5. Гармонический осциллятор.
- •8.6. Малые колебания системы вблизи положения равновесия.
- •8.7. Математический маятник.
- •8.8. Физический маятник.
- •8.9. Затухающие колебания.
- •8.10. Вынужденные колебания. Резонанс.
- •Молекулярная физика и термодинамика §9. Молекулярная физика
- •9.1. Предмет и методы молекулярной физики.
- •9.2. Термодинамическая система. Параметры состояния системы. Равновесное и неравновесное состояние.
- •9.2.1. Идеальный газ. Параметры состояния идеального газа.
- •9.2.2. Газовые законы.
- •9.2.3. Закон Авогадро.
- •9.2.4. Уравнение состояния идеального газа (уравнение Менделеева Клапейрона).
- •Физический смысл универсальной газовой постоянной.
- •9.2. Основное уравнение кинетической теории газов
- •9.3. Барометрическая формула. Распределение Больцмана
- •9.4. Максвелловское распределение молекул по скоростям
- •9.5. Явления переноса. Длина свободного пробега молекул
- •9.6. Явление диффузии
- •9.7. Явление теплопроводности и вязкости
- •§10. Термодинамика
- •10.1. Внутренняя энергия идеального газа
- •10.2. Работа и теплота. Первое начало термодинамики
- •10.3. Работа газовых изопроцессов
- •10.4. Молекулярно-кинетическая теория теплоемкостей
- •10.5. Адиабатический процесс
- •10.6. Круговые обратимые процессы. Цикл Карно
- •10.7. Понятие об энтропии. Энтропия идеального газа
- •10.8. Второе начало термодинамики
- •10.9. Статистическое толкование второго начала термодинамики
- •§11. Реальные газы
- •11.1. Уравнение Ван-дер-Ваальса
- •11.2. Критическое состояние вещества
- •11.3. Эффект Джоуля-Томсона
4.6. Кинетическая энергия вращающегося твердого тела.
1
Рис. 4.18.
Полная кинетическая энергия тела:
,
здесь
– момент инерции тела
относительно оси вращения.
Таким образом, кинетическая энергия тела, вращающегося относительно неподвижной оси равна:
(4.5)
Рис. 4.17
НАПРИМЕР: Катящийся без скольжения шар совершает вращательное движение, а центр тяжести его, через который проходит ось вращения (точка «О») перемещается поступательно (рис.4.17).
Скорость
i-той элементарной
массы тела равна
,
где
– скорость некоторой точки «О» тела;
– радиус-вектор, определяющий положение
элементарной массы по отношению к точке
«О».
Кинетическая энергия элементарной массы равна:
.
З
Справка 3 Учтем, что
,
т.е. квадрат вектора равен квадрату его
модуля.
совпадает по направлению с вектором
и имеет модуль, равный
(рис.4.18).
Учтя
это замечание, можно записать, что
,
где
– расстояние массы
от оси вращения. Во втором слагаемом
сделаем циклическую перестановку
сомножителей, после этого получим
.
Чтобы получить полную кинетическую энергию тела, просуммируем это выражение по всем элементарным массам, вынося постоянные множители за знак суммы. Получим
.
Сумма
элементарных масс
есть масса тела «m».
Выражение
равно произведению массы тела на
радиус-вектор
центра инерции тела (по определению
центра инерции). Наконец,
– момент инерции тела относительно
оси, проходящей через точку «О». Поэтому
можно записать
.
Если в
качестве точки «O» взять
центр инерции тела «С», радиус-вектор
будет равен нулю и второе слагаемое
исчезнет. Тогда, обозначив через
– скорость центра инерции, а через
– момент инерции тела относительно
оси, проходящей через точку «С», получим:
(4.6)
Таким образом, кинетическая энергия тела при плоском движении слагается из энергии поступательного движения со скоростью, равной скорости центра инерции, и энергии вращения вокруг оси, проходящей через центр инерции тела.
4.7. Работа внешних сил при вращательном движении твердого тела.
Найдем работу, которую совершают силы при вращении тела вокруг неподвижной оси Z.
Пусть
на массу
действуют внутренняя сила
и внешняя сила
(результирующая сила
лежит в плоскости, перпендикулярной
оси вращения) (рис. 4.19). Эти силы совершают
за время dt работу:
.
Осуществив в смешанных произведениях векторов циклическую перестановку сомножителей, находим:
,
где
,
– соответственно, моменты внутренней
и внешней сил относительно точки «О».
Просуммировав по всем элементарным массам, получим элементарную работу, совершаемую над телом за время dt:
.
Сумма
моментов внутренних сил равна нулю.
Тогда, обозначив суммарный момент
внешних сил через
,
придем к выражению:
Рис.
4.19
Известно,
что скалярным произведением двух
векторов называется скаляр, равный
произведению модуля одного из перемножаемых
векторов на проекцию второго на
направление первого, учтя, что
,
(направления оси Z и
совпадают), получим
,
но ·dt=d, т.е. угол, на который поворачивается тело за время dt. Поэтому
.
Знак
работы зависит от знака Mz,
т.е. от знака проекции вектора
на направление вектора
.
Итак,
при вращении тела внутренние силы работы
не совершают, а работа внешних сил
определяется формулой
.
Работа за конечный промежуток времени находится путем интегрирования
.
Если
проекция результирующего момента
внешних сил на направление
остается постоянной, то ее можно вынести
за знак интеграла:
,
т.е.
.
Т.е.
работа внешней силы
при вращательном движении тела равна
произведению проекции момента внешней
силы на направление
и угол поворота.
С другой стороны работа внешней силы, действующей на тело идет на приращение кинетической энергии тела (или равна изменению кинетической энергии вращающегося тела). Покажем это:
и тогда
;
Следовательно,
. (4.7)
Самостоятельно:
Упругие силы;
Закон Гука.
ЛЕКЦИЯ 7 |