
- •Ю.Ф. Адамов, а.М. Грушевский, с.П. Тимошенков Современные проблемы проектирования и технологии микроэлектронных систем
- •Часть 1
- •Оглавление
- •Введение
- •1. Технология микроэлектроники и микроэлектронные полупроводниковые приборы
- •1.1. Типовые структуры и характеристики кремниевых биполярных транзисторов
- •1.2. Пределы миниатюризации кремниевых биполярных транзисторов
- •1.3. Типовые структуры и характеристики кремниевых
- •1.4. Тиристорный эффект в комплементарных моп - схемах
- •1.5. Ударная ионизация в канале и обусловленный ею ток подложки
- •1.6. Размерные эффекты в моп - транзисторах
- •1.7. Физические ограничения размеров моп - транзисторов
- •1.8. Прогноз предельных параметров моп-транзисторов
- •1.9. Прогноз развития элементной базы микроэлектроники
- •2. Единство интегральной технологии и схемотехники
- •2.1. Интегральная схемотехника – продукт развития технологии
- •2.2. Принципы интегральной схемотехники
- •2.3. Правила масштабирования моп - транзисторов
- •Закономерности масштабирования согласно трем различным методам
- •2.4. Топологическое проектирование масштабируемых микросхем
- •2.5. Влияние сложности логических схем на характеристики системы металлизации
- •2.6. Немасштабируемые элементы структуры
- •3. Проблемы развития интегральной схемотехники для нанометровых технологий
- •3.1. Кризис схемотехники нанометровых микросхем
- •3.2. Пути унификации схемотехнических решений
- •3.3. Характеризация библиотек транзисторов, логических элементов и простых функциональных блоков
- •4. Литография
- •4.1. Основные определения
- •4.2. Фотолитография – ключевой процесс планарной технологии
- •4.3. Электронно-лучевая литография
- •4.4. Резисты – полимеры, чувствительные к облучению
- •5. Эпитаксия полупроводниковых слоев
- •5.1. Основные определения
- •5.2. Эпитаксиальное выращивание слоев кремния из парогазовой фазы
- •5.3. Молекулярно - лучевая эпитаксия
- •5.4. Развитие эпитаксиальной технологии
- •Основные характеристики диэлектрических подложек, используемых при гетероэпитаксии кремния
- •6. Процессы нанесения диэлектрических покрытий
- •6.1. Назначение диэлектрических слоев и требования к ним
- •6.2. Методы получения диэлектрических покрытий
- •6.3. Термическое окисление кремния
- •6.4. Осаждение диэлектрических пленок
- •6.5. Перспективы развития методов осаждения диэлектрических пленок
- •7. Легирование полупроводников
- •7.1. Назначение процесса легирования
- •7.2. Модели диффузии в твердом теле
- •Предельная растворимость примесей в кремнии
- •7.3 Диффузионные процессы легирования
- •8. Ионная имплантация – основной метод легирования полупроводников
- •8.1. Преимущества процесса имплантации
- •8.2. Оборудование для ионного легирования
- •8.3. Распределение пробегов ионов при имплантации
- •Значения критического угла каналирования в кремнии
- •8.4. Дефекты структуры в полупроводниках при ионном легировании
- •8.5. Отжиг дефектов и активация примеси
- •9. Плазмохимическое травление полупроводников, диэлектриков и металлов
- •9.1. Классификация процессов плазмохимического травления
- •9.2. Особенности плазмохимического травления
- •9.3. Травление кремния и металлов
- •9.4. Травление двуокиси и нитрида кремния
- •9.5. Плазмохимическое травление органических материалов
- •9.6. Производительность и управляемость процессом плазмохимического травления
- •10. Металлизированные соединения и омические контакты
- •10.1. Требования к металлизации
- •10.2. Материалы для электрических соединений
- •10.3. Омические контакты
- •10.4. Оборудование для нанесения металлических пленок
- •10.5. Методы осаждения металлов
- •10.6. Интеграция процессов металлизации
- •Характеристики металлов, применяемых для создания ок к GaAs
- •11. Интеграция технологических процессов в производственный маршрут изготовления микросхем
- •11.1. Взаимосвязь технологических процессов
- •11.2. Интеграция приборов в структуре микросхемы
- •11.3. Спецификация производственного маршрута
- •11.4. Принципы построения маршрута
- •11.5. Иерархическое построение маршрута
- •11.6. Цикличность маршрута
- •11.7. Управляемость и воспроизводимость
- •11.8. Электровакуумная гигиена
- •12. Маршрут производства и физические структуры кмоп - микросхем.
- •12.1. Применение, достоинства и недостатки кмоп - микросхем
- •12.2. Требования к структуре кмоп - микросхем
- •Параметры кмоп - структур
- •12.3. Физическая структура и маршрут изготовления быстродействующих цифровых микросхем
- •12.4. Изоляция приборов
- •12.5. Области истока, стока и контакты к «карманам»
- •12.6. Подзатворный диэлектрик
- •12.7. Затворы субмикронных моп - транзисторов
- •12.8. Контакты к поликремниевым затворам, истокам и стокам
- •12.9. Металлизация
- •13. Физические структуры и технология биполярных микросхем
- •13.1. Области применения и особенности технологии биполярных микросхем
- •13.2. Высокочастотные биполярные транзисторы
- •13.3. Высоковольтные биполярные транзисторы
- •13.5. Биполярные транзисторы в кмоп - микросхемах
- •14. Структуры и процессы формирования пассивных элементов микросхем.
- •14.1. Требования к пассивным элементам микросхем и их состав.
- •14.2. Интегральные резисторы
- •14.3. Интегральные конденсаторы
- •14.4. Интегральные индукторы
- •14.5. Пассивные элементы на основе волноводов
- •14.6. Варакторы
- •14.7. Диоды Шоттки
- •Высота барьера Шоттки б
- •15. Физические структуры микросхем на основе гетеропереходов соединений a3b5 и кремний - германий
- •15.1. Свойства гетеропереходов
- •15.2. Технология гетероструктурных микросхем
- •15.3. Биполярные транзисторы на подложках арсенида галлия
- •15.4. Полевые транзисторы с высокой подвижностью электронов
- •15.5. Гетероструктурные полевые транзисторы на основе широкозонных полупроводников
- •15.6. Микросхемы на основе гетероструктур кремний - германий
- •16. Функциональные приборы и устройства
- •16.1. Основные определения
- •16.2. Оптоэлектронные приборы
- •16.3. Акустоэлектронные приборы
- •Параметры основных пьезоэлектрических материалов
- •16.4. Микроэлектронные электромеханические устройства
- •Важнейшие свойства Si, SiC, AlN
- •Технология поверхностной микромеханики
- •Технология объемной микромеханики
- •Технология корпускулярно - лучевого формообразования
- •Химическое травление кремния при получении многослойных структур
- •Плазмохимическое травление кремниевых структур.
- •Сращивание подложек с использованием промежуточных слоев
- •Перспективы применения структур кремний – на - изоляторе в микро- , наноэлектронике и микросистемной технике
- •Методы производства кни - структур
- •Специфика технологии микроэлектромеханических устройств
- •Компоненты нано- и микросистемной техники Микроакселерометр на поверхностных акустических волнах
- •Принцип действия и основы проектирования микроакселерометра
- •Полевой датчик Холла на основе структур «кремний – на - изоляторе»
- •Микрозеркала в кремниевом кристалле
- •Биосенсоры и биомолекулярная электроника
- •16.5. Магниточувствительные устройства
- •17. Процессы сборки и герметизации микросхем
- •17.1. Разделение пластин на кристаллы
- •Скрайбирование
- •Резка диском с наружной алмазной режущей кромкой
- •Резка ультразвуком
- •Резка пластин термоударом
- •Резка лучом лазера
- •17.2. Корпуса для интегральных микросхем
- •Корпусная элементная база
- •Динамика развития основных исходных конструкторских параметров кристаллов по годам
- •17.3. Монтаж кристаллов в корпуса
- •17.4. Бескорпусная элементная база
- •Сравнительные характеристики корпусированных 64-выводных бис и их бескорпусных аналогов
- •Кристаллы с балочными выводами
- •17.5. Многокристальные модули в трехмерном исполнении
- •Анализ состояния возможностей 3d проектирования
- •Тенденции эволюции микропроцессоров
- •17.6. Герметизация микросхем
- •Защита от альфа-частиц
- •Многокристальные модули, бескорпусные и гибридные микросхемы
- •17.7. Тенденции и перспективы развития сборочной технологии
- •Глава 18. Многоуровневые коммутационные платы. Конструктивно-технологические ограничения при проектировании.
- •18.1. Общие сведения о печатных платах. Конструктивные исполнения.
- •Конструкторско-технологические характеристики печатных плат
- •Наименьшие номинальные значения основных размеров элементов печатного монтажа для узкого места в зависимости от классов точности
- •Линейные размеры пп
- •Электрические характеристики печатных плат
- •Допустимые рабочие напряжения между элементами проводящего рисунка, расположенными в соседних слоях
- •Допустимые рабочие напряжения между элементами проводящего рисунка на наружных слоях пп
- •Допустимые значения воздействующего фактора по группам жесткости
- •Классификация конструкций пп
- •Тонкопленочные платы
- •Тонкопленочные платы на основе анодированного алюминия
- •Толстопленочные платы
- •18.2. Материалы печатных плат
- •18.3. Конструктивно-технологические ограничения при проектировании
- •Рекомендации по проектированию кп (на стеклотекстолите) в тпм
- •18.4. Изготовление фотошаблонов печатных плат
- •Предельные отклонения размеров элементов топологии фш
- •Значения несовмещений по контактным площадкам
- •18.5. Перспективы проектирования для техники поверхностного монтажа
- •Типовые конструкции многоуровневых коммутационных плат (мкп) и технология их реализации
- •Глава 19. Сборка электронных устройств на печатных платах
- •19.1. Методы выполнения электрических соединений
- •19.2. Технология создания микросварных соединений
- •Физико-химические особенности сварки
- •Особенности соединений
- •Термокомпрессионная сварка
- •Сварка с косвенным импульсным нагревом
- •Сварка сдвоенным (расщепленным) электродом
- •Сварка взрывом
- •Ультразвуковая сварка
- •19.3. Особенности микромонтажа бескорпусных микросхем
- •Оценка структуры
- •Оценка напряжений в сварных соединениях
- •Конструктивное исполнение сварных узлов
- •Технологические рекомендации по выполнению сварных узлов
- •19.4. Технология создания микроконтактов методами пайки
- •Подготовка поверхностей
- •Механическая очистка поверхностей
- •Химическая очистка поверхностей
- •Предварительное облуживание поверхностей
- •Проверка подготовленных поверхностей
- •Особенности и способы пайки. Флюсы для пайки
- •Марки флюсов, их состав и назначение
- •Технология пайки
- •Перспективы бессвинцовых технологий в производстве электронных средств
- •Основные типы бессвинцовых припоев
- •Совместимость покрытий
- •Маркировка
- •Возможные дефекты
- •Способы пайки
- •Пайка расплавлением дозированного припоя лазером
- •Достоинства и недостатки методов пайки
- •19.5. Конструктивные варианты монтажа на печатной плате
- •Заключение
- •Литература
12.4. Изоляция приборов
Тип проводимости используемой подложки не имеет принципиального значения для КМОП - структуры. Для применения микросхем удобнее, чтобы подложка была подключена к общей шине питания. Поэтому наиболее распространены подложки p - типа проводимости. Полная изоляция p - канальных МОП - транзисторов достигается использованием «кармана» n - типа проводимости с заглубленным максимумом легирующей примеси. Такой профиль ограничивает ширину ОПЗ стока и ослабляет тиристорный эффект. «Карман» p - типа проводимости гальванически соединен с подложкой и для его изоляции требуются дополнительные технологические процессы. Имплантация фосфора с большой энергией позволяет создать замкнутый контур легирования n - типа вокруг «кармана» p - типа. «Карманы» n - типа и области внешней изоляции n - типа в электрической схеме подключены к источнику питания с положительным потенциалом. «Карманы» p - типа и подложка подключены к общей шине.
Окисные области формируются в канавках 0,2 мкм для того, чтобы после окисления на 0,34 мкм поверхность структуры стала планарной. Окисляется не вся свободная от транзисторов поверхность. Для снижения термомеханических напряжений свободные участки заполняются фиктивными элементами.
Профиль легирующей примеси в каждом «кармане» создается комбинацией трех последовательных процессов имплантации: мелкой, средней и глубокой. С увеличением глубины увеличивается и доза примеси. Профиль легирования рассчитан так, что металлургическая граница p–n - переходов стока - истока будет на уровне концентраций менее 1018 см-3. Ретроградный профиль легирования уменьшает туннельный ток сток - подложка и одновременно ограничивает ширину ОПЗ в подложке и статическую обратную связь сток - исток.
Легирование «карманов» проводится после окисления для того, чтобы сохранить сложный профиль распределения примеси. Тормозная способность окисла и кремния почти одинакова, поэтому наличие окисла на поверхности не меняет распределения примеси.
12.5. Области истока, стока и контакты к «карманам»
Для снижения эффектов ударной ионизации и разогрева носителей в канале МОП - транзистора применяют сложные профили легирования истока - стока. Снижение поля в канале и смещение максимума горизонтального поля от границы в подложку достигается введением в сток-исток расширенной слаболегированной области с заглубленным максимумом концентраци, (см. рис.12.1). В английском языке область SDE – Source-Drain Extension. Контактные области стока-истока отодвинуты от затвора. В английском языке область CSD – Contact Source-Drain. Глубина металлургической границы p–n- перехода в области SDE – от 20 до 30 % длины затвора. Концентрация выбирается минимальной при условии, что поле в промежутке затвор-сток не обедняет SDE-область. Глубина металлургической границы p–n- перехода в области CDE – от 40 до 70 % длины затвора. Легируется область CSD до предела растворимости.
Для уменьшения глубины p–n - переходов при имплантации в n+- области часто используется мышьяк; при имплантации в p+- области применяются молекулярные ионы BF2+. Молекулы BF2 диссоциируют в кремнии, а бор активируется в кристаллической решетке. Атомы фтора в кремнии расположены в междоузлиях и электрически неактивны. Однако при проникновении фтора в окисел кремния его маскирующие свойства резко ухудшаются. В частности коэффициент диффузии бора может возрастать в 100 раз. Фтор замещает кислород в окисле кремния. Свободный кислород диффундирует к границе окисла с кремнием и вступает в реакцию. Толщина диэлектрика при этом возрастает. Для того чтобы минимизировать размеры области SDE, используется процесс двойного самосовмещения стока-истока с затвором. На первом этапе легирования стока-истока маской для легирования области SDE служат затвор и боковая окисная изоляция. Область SDE проникает под край затвора на 1015 % от его длины. Далее на боковых стенках затвора формируется разделительный слой окисла – спейсер. Для этого на рельеф структуры изотропно осаждается слой окисла толщиной равной толщине поликремния на затворе. Дальнейшее травление окисла ведется анизотропно до поверхности поликремния. На боковых стенках затвора остается разделительный окисел толщиной 5070 % от толщины затвора. Этот окисел совместно с затвором и боковой изоляцией служит маской для второго этапа легирования CSD - областей. Толщина спейсера и глубина CSD - области рассчитаны так, чтобы область с максимальной концентрацией примеси не проникала под затвор.
Термический отжиг дефектов структуры и активация примеси во всех легированных слоях проводится один раз для того, чтобы сохранить профили, полученные после имплантации.