
- •Введение
- •Электронное строение элементов-органогенов. Химическая связь в органических молекулах
- •Химическая связь в органических молекулах
- •Классификация химических реакций. Химические свойства алканов, алкенов и алкадиенов
- •Реакционная способность алканов
- •Реакционная способность алкенов
- •Химические свойства алкенов
- •Общий механизм реакций электрофильного присоединения
- •Реакции электрофильного присоединения к несимметричным алкенам
- •Реакции присоединения к алкадиенам
- •Сопряжённые системы. Ароматичность. Электронные эффекты. Реакции электрофильного замещения в бензоле и его производных
- •Химические свойства бензола
- •Взаимное влияние атомов в молекулах органических соединений. Электронные эффекты
- •Реакции электрофильного замещения в нафталине
- •Реакции окисления гомологов бензола
- •Химические свойства галогеналканов, спиртов и фенолов
- •Медико-биологическое значение галогеналканов
- •Спирты и фенолы
- •Медико-биологическое значение спиртов и фенолов
- •Кислотные и основные свойства органических соединений. Реакционная способность аминов
- •Кислоты Бренстеда
- •Основания Бренстеда
- •Реакционная способность оксосоединений
- •Классификация и номенклатура оксосоединений
- •Названия алифатических альдегидов
- •Реакционные центры в молекулах оксосоединений
- •Примеры реакций нуклеофильного присоединения
- •Медико-биологическое значение альдегидов и кетонов
- •Химические свойства карбоновых кислот и их функциональных производных
- •Названия предельных алифатических монокарбоновых кислот
- •Реакционные центры в молекулах карбоновых кислот
- •Кислотные свойства карбоновых кислот
- •Реакции нуклеофильного замещения
- •Реакции карбоновых кислот по радикалу
- •Названия насыщенных алифатических дикарбоновых кислот
- •Медико-биологическое значение карбоновых кислот и их производных
- •Гетерофункциональные соединения алифатического ряда – метаболиты и биорегуляторы
- •Аминоспирты
- •Аминокислоты
- •Гидроксикислоты (оксикислоты)
- •Оксокислоты
- •Медико-биологическое значение гетерофункциональных производных карбоновых кислот
- •Оптическая изомерия
- •Стереоизомерия молекул с несколькими центрами хиральности
- •Стереоизомерия и биологическая активность
- •Гетерофункциональные производные бензольного ряда
- •Производные сульфаниловой кислоты
- •Сульфаниламидные препараты
- •Салициловая кислота и ее производные
- •Гетероциклические соединения. Производные пятичленных гетероциклов
- •Пятичленные гетероциклы с одним гетероатомом
- •Свойства пиррола и его производных
- •Свойства фурана и его производных
- •Пятичленные гетероциклы с двумя гетероатомами
- •Шестичленные гетероциклические соединения
- •Шестичленные гетероциклы с двумя гетероатомами
- •Углеводы. Моносахариды
- •Цикло-оксо-таутомерия моносахаридов
- •Углеводы. Ди- и полисахариды
- •Природные α-аминокислоты. Пептиды, белки
- •Строение и классификация природных α-аминокислот
- •Стереоизомерия α-аминокислот
- •Химические свойства
- •Реакции α-аминокислот in vivo
- •Нуклеиновые кислоты
- •Нуклеиновые основания
- •Нуклеозиды
- •Названия нуклеозидов
- •Нуклеотиды
- •Нуклеиновые кислоты
- •Омыляемые липиды
- •Фосфолипиды
- •Неомыляемые липиды
- •Алкалоиды
- •Литература
- •Оглавление
- •305041, Г. Курск, ул. К. Маркса, 3.
- •305041, Г. Курск, ул. К. Маркса, 3. Заказ № 313.
Неомыляемые липиды
Неомыляемые липиды – группа негидролизующихся природных веществ, растворимых в неполярных органических растворителях (бензол, хлороформ) и не растворимых в воде. К ним относятся терпеноиды и стероиды. Терпеноиды имеют в основном растительное происхождение, а стероиды – животное. И терпеноиды, и стероиды построены из фрагментов изопрена, поэтому их общее название – изопреноиды.
ТЕРПЕНОИДЫ
Терпеноиды – обширный класс природных кислородсодержащих соединений, производных терпенов. Терпены – это углеводороды общей формулы (C5H8)n, где n≥ 2. Углеводородный скелет всех терпеноидов построен из остатков изопрена (2-метилбутадиена-1,3).
Терпеноиды широко растпространены в природе. Они выделены из цветковых растений семейств Amarantaceae, Lamiaceae, Apiaceae, Asteraceae и др., а также некоторых мхов и грибов. Терпеноиды в больших количествах содержатся в эфирных маслах мяты перечной, эвкалипта, герани, розы, лимона, ромашки аптечной, смоле хвойных деревьев.
К терпеноидам относятся растительные пигменты, смолы, фитогормоны, сапонины, жирорастворимые витамины.
В большинстве терпеноидов изопреновые фрагменты соединены по принципу «голова к хвосту» (т.н. «изопреновое правило», впервые сформулированное О. Валлахом и подтвержденное Л. Ружичкой). Например:
(В химии терпеноидов принято пользоваться краткими формулами, без обозначения символов углерода). Наряду с таким построением, но гораздо реже, наблюдается порядок соединения «голова к голове». Известны также природные вещества терпенового типа, структура которых не отвечает изопреновому правилу, но эти исключения немногочисленны.
Терпеновые углеводороды общей формулы (C5H8)n классифицируют по количеству изопреновых звеньев в молекуле на монотерпены (n=2), сесквитерпены (n=3), дитерпены (n=4), тритерпены (n=6), тетратерпены (n=8). Другой вид классификации – по количеству циклов в молекуле. Терпены и терпеноиды могут быть ациклическими (цикл отсутствует), моноциклическими, бициклическими и полициклическими.
Примером ациклических терпеноидов является спирт геранил и продукт его окисления – альдегид гераниаль (цитраль). Они содержатся в эфирных маслах герани, лимона и розы.
Цитраль
используется в глазной практике как
противовоспалительное средство.
Примером моноциклических терпенов является лимонен – компонент эфирного масла лимона и скипидара. При гидрировании лимонена образуется ментан, производным которого является ментол.
Ментол
присутствует в эфирном масле перечной
мяты. Ментол обладает антисептическим,
болеутоляющим и успокаивающим действием.
Он входит в состав валидола, мазей,
применяемых при лечении ревматизма и
при насморке.
В промышленности ментол получают из м-крезола. Вначале проводят реакцию алкилирования по Фриделю-Крафтсу с получением тимола, который затем гидрируют:
Как непредельное соединение лимонен способен к реакции гидратации. При полной гидратации в кислой среде, которая протекает по правилу Марковникова, образуется двухатомный спирт терпин:
Терпин применяется в медицине в виде гидрата как отхаркивающее средство.
Представителями
бициклических терпенов являются пинан
и
камфан:
Ненасыщенным
производным пинана является α-пинен –
составная часть скипидара. Как непредельный
углеводород α-пинен вступает в реакции
присоединения (например, с бромной
водой) и окисления:
Производным камфана является кетон камфора, которую применяют в медицине как стимулятор сердечной деятельности.
При
бромировании камфоры образуется
α-бромкамфора, которая используется
как успокаивающее средство:
Особую группу терпенов составляют растительные пигменты каротиноиды. Они широко распространены в природе, играют роль витаминов или предшественников витаминов, участвуют в процессах фотосинтеза. Большинство каротиноидов являются тетратерпенами. В их молекулах присутствуют длинные сопряженные системы, поэтому они окрашены. Каротиноиды окрашивают морковь в оранжево-красный цвет (carrot – морковь), придают различную окраску плодам и ягодам, присутствуют во всех зеленых частях растений. Для каротиноидов характерна транс-конфигурация двойных связей.
β-Каротин
– растительный пигмент оранжевого
цвета, содержащийся в моркови, томатах:
Многие каротиноиды являются провитамином А, то есть соединениями, которые в организме человека и животных способны превращаться в витамин А.
Витамин А относится к жирорастворимым витаминам.
И каротиноиды, и витамин А неустойчивы и легко разрушаются при нагревании, под действием кислорода воздуха и света.
Витмин А (ретинол) – важнейший витамин, влияющий на рост человека, животных и птиц. Главными признаками авитаминоза А являются заболевание глаз (куриная слепота), исхудание, понижение сопротивляемости организма инфекциям. Перерождение и ороговение эпителия в различных органах вследствие недостатка витамина А приводит к заболеванию дыхательных путей, к желудочно-кишечным и инфекционным заболеваниям, к нарушению деятельности ЦНС, образованию камней в почках и мочевом пузыре и другим патологиям. К жирорастворимым относятся также витамины группы Е и К.
Витамины группы Е – токоферолы – присутствуют в растительных маслах. Витамины группы Е можно рассматривать и как производные гетероциклической системы хромана, и как производные двухатомного фенола гидрохинона. Они выполняют роль антиоксидантов по отношению к ненасыщенным липидам, предохраняя их от пероксидного окисления, участвуют в синтезе белков, тканевом дыхании, в регуляции развития зародыша и функций эпителия половых желез.
Витамины группы К являются антигеморрагическим фактором, они нормализуют процесс свертываемости крови. Витамины группы К – производные 2-метил-1,4-нафтохинона. В природе данная группа витаминов представлена несколькими соединениями. Витамин К1 встречается в высших растениях, витамин К2 – в организмах животных и бактерий.
В
медицине применяется синтетический
водорастворимый аналог витаминов группы
К – викасол, который повышает свертываемость
крови:
СТЕРОИДЫ
Стероиды – большая группа природных соединений как животного, так и растительного происхождения, объединенная общностью углеродного скелета и путями биогенеза.
Соединения стероидной структуры широко распространены в природе. Они найдены практически во всех организмах – от одноклеточных до млекопитающих. Стероидами выполняются самые разнообразные функции (регуляция углеводного обмена – глюкокортикоиды, обмена минеральных солей – минералокортикоиды, процессов размножения – половые гормоны и т.д.). Стероиды появились в организмах на самых ранних стадиях их эволюции.
Почему же природа выбрала именно эти соединения в качестве химических регуляторов биологических процессов? Возможно, из-за высокой устойчивости их молекул и из-за высокой информационной емкости, которая обусловлена многообразием производных и стереоизомеров.
В настоящее время известно около 20 тыс. различных стероидов и свыше 100 из них применяются в медицине.
Все
стероиды являются производными
циклопентанпергидрофенантрена, или
стерана, или гонана. Кольца принято
обозначать как A, B, C и D.
Стереоизомерия
стерана. Все
циклогексановые кольца в структуре
стерана находятся в конформации кресла.
Сочленены они могут быть по-разному.
Рассмотрим типы сочленения колец на
более простом примере – декалине:
Более энергетически выгодным является транссочленение колец.
В структуре стероидов кольца B и C и C и D всегда транс-сочленены (за исключением сердечных гликозидов и ядов жаб – в них C и D цис-сочленены). Кольца A и B могут иметь как цис-, так и транссочленение:
Классификация стероидов. Выделяют следующие группы стероидов:
- стерины
- желчные кислоты
- гормоны коры надпочечников (кортикостероиды)
- половые гормоны (мужские и женские)
- агликоны сердечных гликозидов.
Для родоначальных структур каждой группы стероидов приняты тривиальные названия, т.к. использование международной номенклатуры привело бы к очень сложным названиям.
Стерины
В основе структуры всех стеринов лежит углеводород холестан.
В
молекуле холестана присутствуют две
так называемые ангулярные (угловые)
метильные группы в положениях 10 и 13 и
углеводородный радикал из восьми атомов
углерода в положении 17.
Наиболее
широко распространенным стерином
является холестерин. Он присутствует
в нервной ткани и надпочечниках, в крови,
желчи. В организме присутствует и в
свободном виде, и в виде сложных эфиров
с высшими карбоновыми кислотами (по
спиртовому гидроксилу), например,
холестерина пальмитат.
Только 20% от общего количества холестерина поступает в организм с пищей, основное количество холестерина синтезируется в печени и кишечнике из уксусной кислоты (синтез включает более 20 стадий). Нарушение уровня холестерина (нормальная концентрация в крови ~2г/л) ведет к различным нарушениям. Повышение концентрации холестерина ведет к отложению его на стенках сосудов, к снижению их эластичности и развитию атеросклероза (как следствие – ишемическая болезнь сердца, нарушение мозгового кровообращения). При пересыщении желчи холестерином развивается желчнокаменная болезнь. Значительное падение концентрации холестерина в плазме крови тоже может вести к заболеваниям: гипертиреозу, аддисоновой болезни (поражению коры надпочечников), истощению.
На уровень холестерина влияет состав пищевых жиров. Употребление животных жиров ведет к повышению концентрации холестерина. На 1 г насыщенных жиров должно приходиться 2 г ненасыщенных.
Эргостерин
– 24-метил-холестатриен-5,7,22-ол-3 (содержится
в дрожжах) является провитамином D2,
т.к. при его облучении образуется этот
витамин.
Витамины группы D регулируют обмен кальция и фосфора. Их недостаток ведет к рахиту.
Желчные кислоты
В основе структуры желчных кислот лежит углеводород холан.
Желчные кислоты вырабатываются печенью при окислении холестерина и выделяются с желчью в кишечник. Особенностью структуры желчных кислот является цис-сочленение колец A и B. Наиболее распространены холевая кислота и ее производные.
Холевая
кислота является 3,7,12-тригидроксихолановой
кислотой.
В желчи содержится не свободная холевая кислота, а ее производные – амиды с глицином или таурином:
гидрофильная часть
липофильная часть
В кишечнике и желчи гликохолевая и таурохолевая кислоты присутствуют в виде солей. Они являются дифильными соединениями, т.к. имеют в структуре гидрофильную и гидрофобную части. Желчные кислоты обладают поверхностно-активными свойствами, действуют как эмульгаторы.
Сами желчные кислоты плохо растворимы в воде, могут откладываться в виде камней в желчном пузыре.
Кортикостероиды
Кортикостероиды являются производными углеводорода прегнана.
Кортикостероиды синтезируются в коре надпочечников из холестерина. В чрезвычайно малых концентрациях влияют на процессы жизнедеятельности. Удаление коры надпочечников ведет к смерти.
Гормоны
коры надпочечников регулируют
водно-солевой обмен (минералокортикоиды)
и углеводный обмен (глюкокортикоиды).
Кортикостерон – 11,21-дигид- рок-сипрегнен-4-дион-3,20. Является глюкокортикоидом, антагонистом инсулина (повышает уровень сахара).
Дезоксикортикостерон – 21-гидро- ксипрегнен-4-дион-3,20 является минералокортикоидом.
Глюкокортикоид гидрокортизон (11,17,21-тригидроксипрегнен-4-дион-3,20) и синтетический аналог глюкокортикоидов преднизолон (11,17,21-тригидроксипрегнадиен-1,4-дион-3,20) используются как противовоспалительные и антиаллергические средства при лечении ревматоидного артрита, бронхиальной астмы и т.д. Используются в медицине в виде ацетатов по первичному спиртовому гидроксилу в положении 21.
Андрогенные гормоны
Мужские половые гормоны являются производными андростана.
Главными
андрогенными гормонами являются
андростерон и тестостерон. Они влияют
на развитие вторичных половых признаков,
выработку спермы, оказывают активизирующее
действие на синтез ДНК и биосинтез
белка, потенцируют сгорание углеводов
и жирных кислот с образованием энергии.
В медицинской практике тестостерон применяется в виде пропионата (сложные эфиры обладают более длительным действием в организме):
Реакция ацилирования протекает по спиртовому гидроксилу. В качестве ацилирующего агента можно использовать хлорангидрид или ангидрид пропионовой кислоты.
Женские половые гормоны
Основой структуры эстрогенных гормонов является эстран (обратите внимание на отсутствие ангулярной метильной группы в положении 10).
Эстрогены контролируют менструальный цикл у женщин. Представителями эстрогенных гормонов являются эстрадиол и эстрон:
Эстрадиол применяется в медицинской практике в виде дипропионата.
Для ацилирования можно использовать также пропионовый ангидрид.
К женским половым гормонам относятся также гестагены (гормоны желтого тела яичников, гормоны беременности). Гестагены являются производными прегнана. Наиболее активным гестагеном является прогестерон:
Сердечные гликозиды
Сердечные гликозиды – это соединения, в которых стероидная часть молекулы является агликоном (несахарной частью) гликозидов, образованных моно- или олигосахаридами. В небольших дозах сердечные гликозиды используются в кардиологии. Они увеличивают силу и уменьшают частоту сердечных сокращений, улучшают тканевой обмен сердечной мышцы. В больших дозах сердечные гликозиды являются ядами. В мировой медицинской практике широко используют препараты, получаемые из наперстянки (дигиталиса), строфанта, ландыша, горицвета.
Например, агликоном ланатозида А, выделяемого из наперстянки шерстистой, является дигитоксигенин:
Характерной
особенностью агликонов сердечных
гликозидов является цис-сочленение
колец A и B и C и D, а также наличие
ненасыщенного пяти- или шестичленного
лактонного кольца в положении 17.
Углеводная часть молекулы содержит от
одного до пяти моносахаридных остатков.
О-гликозидная связь с углеводным
остатком осуществляется за счет
спиртового гидроксила в положении 3.