- •Введение.
- •Обозначения и символы
- •Глава 1. Способы проецирования
- •1.1. Общие понятия метода проецирования
- •1.2. Центральное проецирование
- •1.3. Параллельное проецирование
- •Р ис. 1.3б. Параллельное проецирование.
- •1.4. Основные свойства параллельного проецирования
- •Глава 2. Точка
- •2.1. Ортогональная система двух плоскостей проекций. Эпюр Монжа
- •Р ис. 2.1. Система 2х плоскостей проекций.
- •Р ис. 2.2. Эпюр точки.
- •2.2 Ортогональная система трех плоскостей проекций
- •Р ис. 2.3. Система 3х плоскостей проекций.
- •Р ис. 2.4. Комплексный чертеж.
- •2.3 Точки разных углов пространства. Точки частного положения
- •Р ис. 2.5. Точки в 4 и 5 октанте. Р ис. 2.6. Комплексный чертеж точек в 4 и 5 октантах.
- •Р ис. 2.7. Точки частного положения.
- •Р ис. 2.8. Комплексный чертеж точек частного положения. Вопросы и задачи для самоконтроля
- •Р ис. 3.4. Фронталь.
- •Р ис. 3.5. Профильная прямая.
- •Р ис. 3.9а. Отрезок в пространстве. Р ис3.9б. Определение длины отрезка прямой и углов ее наклона к плоскостям проекций.
- •3.4 Следы прямой
- •Р ис 3.10. Следы прямой.
- •3.5 Взаимное расположение прямых.
- •Р ис 3.11. Пересекающиеся прямые. Р ис. 3.12. Параллельные прямые.
- •Р ис. 3.13. Скрещивающиеся прямые.
- •Вопросы и задачи для самоконтроля
- •Глава 4. Плоскость
- •4.1 Способы задания плоскости
- •Р ис. 4.2. Следы плоскости.
- •4.2 Плоскости частного положения
- •Р ис. 4.3а. Горизонтально проецирующая плоскость.
- •Р ис. 4.3б. Фронтально проецирующая плоскость.
- •Р ис. 4.3в. Профильно проецирующая плоскость.
- •Р ис. 4.4а. Горизонтальные плоскость уровня.
- •Р ис. 4.4б. Фронтальная плоскость уровня.
- •Р ис. 4.4в. Профильная плоскость уровня.
- •4.3 Прямая линия и точка в плоскости общего положения
- •4.4. Главные линии плоскости
- •Р ис. 4.6. Горизонтали плоскости.
- •Р ис. 4.7. Фронтали плоскости.
- •Р ис. 4.8. Профильные прямые плоскости.
- •4.5.2.Прямая линия, параллельная плоскости.
- •Р ис. 4.12. Прямая линия параллельная плоскости.
- •4.5.3. Пересекающиеся плоскости.
- •Р ис. 4.14а. Плоскости заданы следами.
- •Р ис. 4.14б. Одна из плоскостей проецирующая.
- •Р ис. 4.14в. Пересечение по линиям частного положения.
- •Р ис. 4.15. Общий случай пересечения плоскостей.
- •4.5.4.Пересечение прямой линии с плоскостью .
- •Р ис. 4.16. Пересечение прямой линии с плоскостью.
- •4.5.5. Прямая линия, перпендикулярная плоскости.
- •Р ис. 4.19. Прямая линия, перпендикулярная плоскости.
- •Глава 5. Способы преобразования проекций
- •5.1 Способ замены плоскостей проекций
- •Р ис. 5.1. Способ замены плоскостей.
- •5.2 Способ вращения
- •5.2.1. Вращение вокруг проецирующих прямых
- •Р ис. 5.5. Вращение точки.
- •Р ис. 5.6. Вращение прямой.
- •Р ис. 5.7. Вращение плоскости.
- •Р ис. 5.8. Определение натуральной величины плоскости (авс) способом вращения
- •5.2.2 Вращение вокруг линии уровня
- •Р ис. 5.9. Вращение вокруг горизонтали.
- •5.3. Способ плоскопараллельного перемещения
- •Р ис. 5.10. Способ плоскопараллельного перемещения.
- •Вопросы и задачи для самоконтроля
- •Глава 6. Поверхности
- •6.1. Многогранные поверхности
- •6.1.1. Классификация многогранников
- •6.1.2. Некоторые позиционные задачи пересечения многогранника с прямой и плоскостью
- •Р ис. 6.2. Пересечение многогранника плоскостью.
- •6.1.3. Развертка многогранника
- •Р ис. 6.4. Пересечение прямой с многогранником.
- •Р ис. 6.5. Развёртка призмы. Способ нормального сечения.
- •6.2. Кривые поверхности
- •6.2.1. Основные понятия
- •6.2.2. Задание поверхности вращения на чертеже. Точки и линии на поверхности
- •6.2.3. Позиционные задачи на пересечение поверхности с прямой линией и плоскостью
- •Р ис. 6.7. Сечение конуса.
- •Р ис. 6.9. Пересечение прямой с конусом.
- •6.2.4. Взаимное пересечение поверхностей
- •Р ис. 6.11. Способ секущих плоскостей.
- •Вопросы и задачи для самоконтроля
- •Глава 7. Элементы компьютерной графики в начертательной геометрии и черчении
- •7.1 Возможности системы AutoCad
- •7.1.1. Манипулятор "Мышь"
- •7.1.2. Функциональные клавиши.
- •7.1.3. Система координат
- •7.1.4. Меню команд
- •7.1.5. Указание точек
- •7.1.6. Слои, цвета типы линий
- •7.2 Примеры компьютерного решения графических
- •Список литературы
Р ис. 5.10. Способ плоскопараллельного перемещения.
Проекция
А
В
является натуральной величиной АВ,
т.к. первым перемещение прямая
преобразована во фронталь.
Второе
перемещение выполним параллельно
плоскости 2.
Фронтальную проекцию переместим без
изменений размеров перпендикулярно
оси x(А
В
x).
На горизонтальной проекции точки
движутся параллельно оси x,
и отрезок АВ преобразуется в
горизонтально проецирующую прямую.
Задача: Определить расстояние от точки S до плоскости АВС (рис. 5.11) способом плоскопараллельного перемещения.
Решение: Для решения задачи необходимо преобразовать плоскость общего положения в проецирующую. Если одна из проекций плоскости будет преобразована в прямую линию, то можно отпустить перпендикуляр из точки S и определить расстояние. Перемещаем плоскость АВС перпендикулярно плоскости 2.
Р
ис. 5.11.
Располагаем
новую горизонтальную проекцию
прямоугольника А
В
С
без изменения формы и размера так, чтобы
горизонталь h оказалась
перпендикулярно плоскости 2.
На фронтальной проекции точки перемещаются
параллельно оси x,
Новая фронтальная проекция треугольника
А
В
С
преобразуется в прямую линию. Опускаем
перпендикуляр из перемещенной точки
S
на новую фронтальную проекцию
треугольника.
Вопросы и задачи для самоконтроля
-
В чём сущность способа перемещения плоскостей проекций?
-
Сколько нужно выполнить последовательных преобразований и каких, чтобы определить натуральную величину плоскости общего положения?
-
Как движутся точки геометрического объекта при его вращении вокруг осей перпендикулярных плоскостям проекции?
-
Сколько нужно выполнить последовательных вращений и каких, чтобы преобразовать прямую общего положения в проецирующую?
-
Определите расстояние между двумя параллельными прямыми общего положения способом плоскопараллельного перемещения?
-
Определите натуральную величину треугольника вращением вокруг фронтали.
Глава 6. Поверхности
6.1. Многогранные поверхности
6.1.1. Классификация многогранников
Многогранник - это замкнутая пространственная фигура, ограниченная плоскими многоугольниками (частями пересекающихся плоскостей).
Выпуклые многоугольники - это такие у которых все вершины и ребра находятся по одну сторону любой из их граней.
Наибольший интерес представляют призмы, пирамиды и правильные выпуклые многоугольники - тела Платона.
Призма - многоугольник, две грани которого представляют собой равные многоугольники (основания призмы) со взаимно параллельными сторонами, все другие грани- параллелограммы (или прямоугольники).
Пирамида - многогранник, одна грань которого - многоугольник, а остальные грани треугольники с общей вершиной.
Тела Платона - многогранники, все грани которых представляют собой правильные и равные многоугольники. Углы при вершинах таких многоугольников равны между собой. Существует 5 типов правильных многогранников: гексаэдр (куб)- 6 квадратов, тетраэдр, октаэдр, икосаэдр - 4, 8, 20 правильных треугольников, додекаэдр - 12 правильных пятиугольников.
6.1.2. Некоторые позиционные задачи пересечения многогранника с прямой и плоскостью
Плоскость пересекает многогранную поверхность по плоской замкнутой ломаной линии, называемой фигурой сечения. Вершины и стороны фигуры сечения определяются пересечением заданной плоскости соответственно с рёбрами и гранями многоугольника. То есть многократно решается задача или на пересечение двух плоскостей (граней многогранника с секущей плоскостью), или на пересечение прямой с плоскостью (рёбер многогранника с секущей плоскостью). Это уже известные задачи.
Задача: Дана треугольная наклонная пирамида и секущая фронтально проецирующая плоскость (рис. 6.1). Определить проекции фигуры сечения.
Р
ис. 6.1.
Решение: Так как секущая плоскость является фронтально проецирующей, то фронтальная проекция фигуры сечения (122232) совпадет со следом плоскости 2. Фигура сечения является треугольником и определяется на пересечении следа плоскости с соответствующими ребрами пирамиды. По линиям связи определяем горизонтальные проекции вершин треугольника (112131) на соответствующих ребрах пирамиды. Далее определяется видимость звеньев линии сечения в зависимости от видимости граней пирамиды на горизонтальной проекции.
Задача: Дана прямая треугольная призма и секущая плоскость общего положения Т (рис. 6.2). Определить проекции фигуры сечения.
