
- •Содержание
- •Глава 1 - Общие сведения о газотурбинных двигателях
- •1.1 — Введение
- •1.2.1.2 — Турбовинтовые двигатели и вертолетные ГТД
- •1.2.1.3 — Двухконтурные турбореактивные двигатели (ТРДД)
- •1.2.1.4 — Двигатели для самолетов вертикального взлета и посадки
- •1.2.1.5 - Комбинированные двигатели для больших высот и скоростей полета
- •1.2.1.6 - Вспомогательные авиационные ГТД и СУ
- •1.2.2 - Авиационные СУ
- •1.2.3 - История развития авиационных ГТД
- •1.2.3.1 - Россия
- •1.2.3.2 - Германия
- •1.2.3.3 – Англия
- •1.3 - ГТД наземного и морского применения
- •1.3.1 - Области применения наземных и морских ГТД
- •1.3.1.1 -Механический привод промышленного оборудования
- •1.3.1.2 - Привод электрогенераторов
- •1.3.1.3 - Морское применение
- •1.3.2 - Основные типы наземных и морских ГТД
- •1.3.2.1 - Стационарные ГТД
- •1.3.2.2 - Наземные и морские ГТД, конвертированные из авиадвигателей
- •1.3.2.3 - Микротурбины
- •1.4 - Основные мировые производители ГТД
- •1.4.1 - Основные зарубежные производители ГТД
- •1.4.2 - Основные российские производители ГТД
- •1.6 - Перечень использованной литературы
- •Глава 2 - Основные параметры и требования к ГТД
- •2.1 - Основы рабочего процесса ГТД
- •2.1.1 - ГТД как тепловая машина
- •2.1.1.1 – Простой газотурбинный цикл
- •2.1.1.2 - Применение сложных циклов в ГТД
- •2.1.2 - Авиационный ГТД как движитель
- •2.1.3 - Полный к.п.д. и топливная эффективность (экономичность) ГТД
- •2.2 - Параметры ГТД
- •2.2.1 - Основные параметры авиационных ГТД
- •2.2.2 - Основные параметры наземных и морских приводных ГТД
- •2.3 - Требования к авиационным ГТД
- •2.3.1 - Требования к тяге (мощности)
- •2.3.2 – Требования к габаритным и массовым характеристикам
- •2.3.3 - Возможность развития ГТД по тяге (мощности)
- •2.3.4 - Требования к используемым горюче-смазочным материалам
- •2.3.4.1 - Топлива авиационных ГТД
- •2.3.4.2 – Авиационные масла
- •2.3.4.3 - Авиационные гидравлические жидкости
- •2.3.5 – Надежность авиационных ГТД
- •2.3.5.1 – Основные показатели
- •2.3.5.1.1 – Показатели безотказности, непосредственно влияющие на безопасность работы двигателя
- •2.3.5.2 – Методология обеспечения надежности
- •2.3.5.2.1 – Этап проектирования
- •2.3.6 - Ресурс авиационных ГТД
- •2.3.6.1 - Методология обеспечения ресурса
- •2.3.6.2 - Количественные показатели ресурса
- •2.3.7 - Требования производственной технологичности
- •2.3.8 - Требования эксплуатационной технологичности
- •2.3.8.1 - Эксплуатационная технологичность - показатель совершенства ГТД
- •2.3.8.2 - Основные качественные характеристики ЭТ
- •2.3.8.3 - Количественные показатели ЭТ
- •2.3.9 - Экономические требования к авиационным ГТД
- •2.3.9.1 - Себестоимость производства
- •2.3.9.2 - Стоимость ЖЦ двигателя
- •2.3.10 - Экологические требования
- •2.3.10.2 - Ограничения по шуму
- •2.3.12 - Соответствие требованиям летной годности
- •2.4 - Особенности требований к ГТД наземного применения
- •2.4.1 - Особенности требований к приводным ГТД для ГПА
- •2.4.1.1 - Требования к характеристикам ГТД
- •2.4.1.2 - Требования к ресурсам и надежности
- •2.4.1.4 - Используемые ГСМ
- •2.4.1.5 - Требования экологии и безопасности
- •2.4.1.6 - Требования производственной и эксплуатационной технологичности
- •2.4.2 - Особенности требований к ГТД энергетических установок
- •2.4.2.1 - Требования к характеристикам ГТД
- •2.4.2.2 - Используемые ГСМ
- •2.4.2.3 - Требования к ресурсам и надежности
- •2.4.2.4 - Требования к экологии и безопасности
- •2.4.2.5 - Требования к контролепригодности, ремонтопригодности и др.
- •2.5 - Методология проектирования
- •2.5.1 - Основные этапы проектирования ГТД
- •2.5.1.1 - Техническое задание
- •2.5.1.2 – Техническое предложение
- •2.5.1.3 – Эскизный проект
- •2.5.1.4 – Технический проект
- •2.5.1.5 – Разработка конструкторской документации
- •2.5.2 - Разработка конструкций ГТД на основе базовых газогенераторов
- •2.5.2.1 - Газогенератор – базовый узел ГТД
- •2.5.2.2 – Основные параметры и конструктивные схемы газогенераторов ГТД
- •2.5.2.3 – Создание ГТД различного назначения на базе единого газогенератора
- •2.6.1.1 — Общие положения по авиационным ГТД
- •2.6.1.2 — Общие положения по сертификации наземной техники
- •2.6.1.3 — Общие положения по сертификации производства и СМК
- •2.6.1.4 — Органы регулирования деятельности
- •2.6.1.4.1 — Авиационная техника
- •2.6.1.4.2 — Органы регулирования деятельности по сертификации производства и СМК
- •2.6.2.1 — Авиационная техника
- •2.6.2.2 — Наземная техника
- •2.6.2.3 Производство и СМК
- •2.6.2.4 — Принятые сокращения и обозначения
- •2.6.3.1 — Основные этапы создания авиационных ГТД
- •2.6.3.2 — Этапы процесса сертификации авиационных ГТД
- •Глава 3 - Конструктивные схемы ГТД
- •3.1 - Конструктивные схемы авиационных ГТД
- •3.1.1 - Турбореактивные двигатели
- •3.1.2 - Двухконтурные турбореактивные двигатели
- •3.1.3 - Турбовинтовые и вертолетные ГТД
- •3.2 - Конструктивные схемы наземных и морских ГТД
- •3.2.1 - Одновальные ГТД
- •3.2.2 - ГТД со свободной силовой турбиной
- •3.2.3 - ГТД со «связанным» КНД
- •3.2.4 - Конструктивные особенности наземных ГТД различного назначения
- •3.2.5 - Конструктивные особенности ГТД сложных циклов
- •3.4 - Перечень использованной литературы
- •Глава 4 - Силовые схемы ГТД
- •4.1 - Усилия, действующие в ГТД
- •4.1.2 - Крутящие моменты от газовых сил
- •Глава 5 - Компрессоры ГТД
- •6.4.4 - Корпуса КС
- •6.4.4.1 - Наружный корпус КС
- •6.4.4.2 - Внутренний корпус КС
- •6.4.4.3 - Разработка конструкции корпусов
- •6.4.5 - Системы зажигания ГТД
- •6.5 - Экспериментальная доводка КС
- •6.6 - Особенности КС двигателей наземного применения
- •6.7 - Перспективы развития камер сгорания ГТД
- •Глава 7 - Форсажные камеры
- •7.1 - Характеристики ФК
- •7.2 - Работа ФК
- •7.3 - Требования к ФК
- •7.4 - Схемы ФК
- •7.4.2 - Вихревые ФК
- •7.4.3 - ФК с аэродинамической стабилизацией
- •7.5 - Основные элементы ФК
- •7.5.1 - Смеситель
- •7.5.2 - Диффузоры
- •7.5.3 - Фронтовые устройства
- •7.5.4 - Корпусы и экраны
- •7.6 - Управление работой ФК
- •7.6.1 - Розжиг ФК
- •7.6.2 - Управление ФК на режимах приемистости и сброса
- •7.6.3 - Управление ФК на стационарных режимах
- •Глава 8 - Турбины ГТД
- •8.2 - Аэродинамическое проектирование турбины
- •8.2.2 - Технология одномерного проектирования турбины
- •8.2.4 - 2D/3D-моделирование невязкого потока в проточной части турбины
- •8.2.5 - 2D/3D-моделирование вязкого потока в турбине
- •8.2.6 - Синтез геометрии профилей и лопаточных венцов
- •8.2.7 - Одномерное проектирование турбины
- •8.2.7.1 - Выбор количества ступеней ТВД
- •8.2.7.2 - Выбор количества ступеней ТНД
- •8.2.7.3 - Аэродинамическое проектирование и к.п.д. турбины
- •8.2.9 - Методы управления пространственным потоком в турбине
- •8.2.10 - Экспериментальное обеспечение аэродинамического проектирования
- •8.2.11 - Перечень использованной литературы
- •8.3 - Охлаждение деталей турбины
- •8.3.1 - Тепловое состояние элементов турбин
- •8.3.1.1 - Принципы охлаждения
- •8.3.2 - Конвективное, пленочное и пористое охлаждение
- •8.3.3 - Гидравлический расчет систем охлаждения
- •8.3.4 - Методология расчета температур основных деталей турбин
- •8.3.5 - Расчет полей температур в лопатках
- •8.3.6 - Перечень использованной литературы
- •8.4 - Роторы турбин
- •8.4.1 - Конструкции роторов
- •8.4.1.1 - Диски турбин
- •8.4.1.2 - Роторы ТВД
- •8.4.1.3 - Роторы ТНД и СТ
- •8.4.1.4 - Примеры доводки и совершенствования роторов
- •8.4.1.5 - Предотвращение раскрутки и разрушения дисков
- •8.4.2 - Рабочие лопатки турбин
- •8.4.2.1 - Соединение рабочих лопаток с диском
- •8.4.3 - Охлаждение рабочих лопаток
- •8.4.4 - Перечень использованной литературы
- •8.5 - Статоры турбин
- •8.5.1 - Корпусы турбин
- •8.5.2 - Сопловые аппараты
- •8.5.3 - Аппараты закрутки
- •8.5.4 – Перечень использованной литературы
- •8.6 - Радиальные зазоры в турбинах
- •8.6.1 - Влияние радиального зазора на к.п.д. турбины
- •8.6.2 - Изменение радиальных зазоров турбины в работе
- •8.6.3 - Управление радиальными зазорами
- •8.6.4 - Выбор радиального зазора при проектировании
- •8.6.5 - Перечень использованной литературы
- •8.7 - Герметизация проточной части
- •8.7.1 - Герметизация ротора и статора от утечек охлаждающего воздуха
- •8.7.2 - Уплотнения между ротором и статором
- •8.7.3 - Перечень использованной литературы
- •8.8 - Материалы основных деталей турбины
- •8.8.1 - Диски и роторные детали турбины
- •8.8.2 - Сопловые и рабочие лопатки
- •8.8.3 - Покрытия лопаток
- •8.8.4 - Корпусы турбин
- •8.9.1 - Перечень использованной литературы
- •8.10.1 - Прогары и трещины лопаток ТВД
- •8.10.3 - Недостаточный циклический ресурс и поломки роторных деталей
- •8.10.4 - Устранение дефектов турбины в ходе доводки
- •8.11 - Перспективы развития конструкций и методов проектирования турбин
- •8.11.1 - 2D-аэродинамика: эффективные охлаждаемые лопатки ТВД
- •8.11.2 - 2D-аэродинамика: сокращение количества лопаток
- •8.11.3 - Противоположное вращение роторов ТВД и ТНД
- •8.11.4 - 2D-аэродинамика: эффективные решетки профилей ТНД
- •8.11.5 - 3D-аэродинамика: эффективные формы лопаточных венцов
- •8.11.6 - Новые материалы и покрытия для лопаток и дисков
- •8.11.7 - Совершенствование конструкций охлаждаемых лопаток
- •8.11.8 - Оптимизированные системы управления радиальными зазорами
- •8.11.9 - Развитие средств и методов проектирования
- •Глава 9 - Выходные устройства ГТД
- •9.1 - Нерегулируемые сопла
- •9.2 - Выходные устройства ТРДД
- •9.2.1 - Выходные устройства со смешением потоков
- •9.2.2 - Выходные устройства ТРДД с раздельным истечением потоков
- •9.3 - Регулируемые сопла
- •9.3.1 - Осесимметричные регулируемые сопла
- •9.3.1.1 - Регулируемое сопло двигателя Д30-Ф6
- •9.3.2 - Плоские сопла
- •9.4 - Выходные устройства двигателей самолетов укороченного и вертикального взлета-посадки
- •9.5 - «Малозаметные» выходные устройства
- •9.6 - Реверсивные устройства
- •9.6.1 - Реверсивные устройства ковшового типа
- •9.6.2 - Реверсивные устройства створчатого типа
- •9.6.3.1 - Гидравлический привод реверсивного устройства
- •9.6.3.3 - Механический замок фиксации положения реверсивного устройства
- •9.7 - Приводы выходных устройств
- •9.7.1 - Пневмопривод
- •9.7.2 - Пневмомеханический привод
- •9.8 - Выходные устройства диффузорного типа
- •9.8.1 - Конические диффузоры
- •9.8.2 - Осекольцевые диффузоры
- •9.8.3 - Улитки
- •9.8.4 - Соединения с выхлопными шахтами
- •9.8.5 - Выходные устройства вертолетных ГТД
- •9.12 - Перечень использованной литературы
- •Глава 10 - Привод агрегатов, редукторы, муфты ГТД
- •10.1 - Привод агрегатов ГТД
- •10.1.1 - Центральный привод
- •10.1.2 - Коробки приводов агрегатов
- •10.2 - Редукторы ГТД
- •10.2.1 - Редукторы ТВД
- •10.2.1.1 - Общие требования, кинематические схемы
- •10.2.1.2 - Конструкция редукторов ТВД
- •10.2.2 - Редукторы привода несущего и рулевого винтов вертолетов
- •10.2.2.1 - Редукторы привода несущего винта
- •10.2.2.1.1 - Кинематические схемы главных редукторов вертолетов
- •10.2.2.1.2 - Конструкция главных редукторов вертолетов
- •10.2.2.2 - Редукторы хвостовые и промежуточные
- •10.2.3 - Редукторы ГТУ
- •10.2.3.1 - Конструкция редукторов
- •10.3 - Муфты приводов ГТД и ГТУ
- •10.3.1 - Требования к муфтам
- •10.3.2 - Конструкция муфт
- •10.4 - Проектирование приводов агрегатов ГТД
- •10.4.1 - Проектирование центрального привода
- •10.4.1.1 - Конструкция центрального привода
- •10.4.2 - Проектирование коробок приводов агрегатов
- •10.4.2.1 - Конструкция коробки приводов агрегатов
- •10. 5 - Проектирование редукторов
- •10.5.1 - Особенности проектирования редукторов ТВД
- •10.5.2 - Особенности проектирования вертолетных редукторов
- •10.5.3 - Особенности проектирования редукторов ГТУ
- •10.6.1 - Требования к зубчатым передачам
- •10.6.2 - Классификация зубчатых передач
- •10.6.3 - Исходный производящий контур
- •10.6.4 - Нагруженность зубчатых передач
- •10.6.5 - Конструктивные параметры зубчатых передач
- •10.6.5.1 - Конструкции зубчатых колес
- •10.6.6 - Материалы зубчатых колес, способы упрочнения
- •Глава 11 - Пусковые устройства
- •11.1 - Общие сведения
- •11.1.1 - Основные типы пусковых устройств современных ГТД
- •11.1.2 - Технические характеристики пусковых устройств современных ГТД
- •11.2 - Электрические пусковые устройства ГТД
- •11.3 - Воздушные пусковые устройства ГТД
- •11.3.1 - Воздушно - турбинные пусковые устройства ГТД
- •11.3.2 - Регулирующие и отсечные воздушные заслонки
- •11.3.3 - Струйное пусковое устройство ГТД
- •11.4 - Турбокомпрессорные пусковые устройства ГТД
- •11.4.1 - Классификация ТКС ГТД
- •11.4.2 - Принцип действия ТКС
- •11.4.3 - Одновальный ТКС
- •11.4.4 - ТКС со свободной турбиной
- •11.4.5 - Особенности систем ТКС
- •11.5 - Гидравлические пусковые устройства ГТД
- •11.5.1 - Конструкция гидравлических стартеров
- •11.6 - Особенности пусковых устройств ГТД наземного применения
- •11.6.1 - Электрические пусковые устройства
- •11.6.2 - Газовые пусковые устройства
- •11.6.3 - Гидравлические пусковые устройства
- •11.7 - Редукторы пусковых устройств
- •11.8 - Муфты свободного хода пусковых устройств
- •11.8.1 - Муфты свободного хода роликового типа
- •11.8.2 – Муфты свободного хода храпового типа
- •11.9 – Системы смазки пусковых устройств
- •11.11 - Перечень используемой литературы
- •Глава 12 - Системы ГТД
- •12.1.1 - Системы автоматического управления и контроля авиационных ГТД
- •12.1.1.1 - Назначение САУ
- •12.1.1.2 - Состав САУ
- •12.1.1.3 - Основные характеристики САУ
- •12.1.1.5.2 - Порядок разработки САУ
- •12.1.1.5.3 - Основные принципы выбора варианта САУ в процессе проектирования
- •12.1.1.5.4 - Структурное построение САУ
- •12.1.1.5.5 - Программы управления ГТД
- •12.1.1.5.6 - Расчет и анализ показателей надежности
- •12.1.2 - САУ наземных ГТУ
- •12.1.2.1 - Назначение САУ
- •12.1.2.2 - Выбор САУ ГТУ и ее элементов
- •12.1.2.3 - Состав САУ ГТУ
- •12.1.2.4 - Основные характеристики САУ
- •12.1.2.5 - Работа САУ ГТУ
- •12.1.2.6 - Блок управления двигателем (БУД)
- •12.1.2.7 - Особенности системы контроля и диагностики наземных ГТД
- •12.1.4 – Перечень использованной литературы
- •12.2 - Топливные системы ГТД
- •12.2.1 - Топливные системы авиационных ГТД
- •12.2.1.1 - Назначение топливной системы
- •12.2.1.2 - Состав топливной системы
- •12.2.1.3 - Основные характеристики топливной системы
- •12.2.1.4 - Работа топливной системы
- •12.2.1.5 - Выбор топливной системы и ее элементов
- •12.2.1.5.1 – Выбор топливной системы
- •12.2.1.5.2 - Выбор насосов топливной системы
- •12.2.1.5.3 - Определение подогревов топлива в топливной системе
- •12.2.1.5.5 - Математическая модель топливной системы
- •12.2.1.6 - Гидроцилиндры
- •12.2.1.7 - Топливные фильтры
- •12.2.2 - Особенности топливных систем ГТУ
- •12.2.2.1 - Назначение топливной системы
- •12.2.2.2 - Выбор топливной системы и ее элементов
- •12.2.2.3 - Основные характеристики топливной системы
- •12.2.2.4 - Работа топливной системы
- •12.2.4 – Перечень использованной литературы
- •12.3 - Системы диагностики
- •12.3.1 - Общие вопросы диагностирования
- •12.3.1.1 - Задачи диагностирования ГТД
- •12.3.1.3 - Диагностируемые системы ГТД
- •12.3.1.4 - Виды наземного и бортового диагностирования ГТД
- •12.3.1.5 - Структура систем диагностики
- •12.3.1.6 - Регламент диагностирования ГТД
- •12.3.1.7 - Регистрация параметров ГТД
- •12.3.2 - Диагностирование системы механизации ГТД, САУ и ТП ГТД
- •12.3.3 - Диагностирование работы маслосистемы и состояния узлов ГТД, работающих в масле
- •12.3.3.1 - Неисправности маслосистемы и узлов ГТД, работающих в масле
- •12.3.3.2 - Диагностирование по параметрам маслосистемы
- •12.3.3.3 - Контроль содержания в масле частиц износа (трибодиагностика)
- •12.3.4 - Контроль и диагностика по параметрам вибрации ГТД
- •12.3.4.1 - Параметры вибрации и единицы изменения
- •12.3.4.2 - Статистические характеристики вибрации
- •12.3.4.3 - Причины возникновения вибрации в ГТД
- •12.3.4.4 - Датчики измерения вибрации
- •12.3.4.5 - Вибрационная диагностика ГТД
- •12.3.5 - Диагностирование ГТД по газодинамическим параметрам
- •12.3.5.1 - Неисправности проточной части ГТД
- •12.3.5.2 - Требования к перечню контролируемых параметров
- •12.3.5.3 - Алгоритмы диагностирования проточной части ГТД
- •12.3.6 - Обеспечение диагностирования ГТД инструментальными методами
- •12.3.6.1 - Виды неисправностей, выявляемых инструментальными методами
- •12.3.6.2 - Методы и аппаратура инструментальной диагностики
- •12.3.6.2.1 - Оптический осмотр проточной части ГТД
- •12.3.6.2.2 - Ультразвуковой метод диагностирования
- •12.3.6.2.3 - Вихретоковый метод диагностирования
- •12.3.6.2.4 - Капиллярный метод диагностирования с применением портативных аэрозольных наборов
- •12.3.6.2.5 - Диагностирование состояния проточной части ГТД перспективными методами
- •12.3.7 - Особенности диагностирования технического состояния ГТД наземного применения на базе авиационных двигателей
- •12.3.7.1 - Особенности режимов эксплуатации
- •12.3.7.2 - Общие особенности диагностирования наземных ГТД
- •12.3.7.3 - Особенности диагностирования маслосистемы
- •12.3.7.5 - Особенности диагностирования проточной части
- •12.4 - Пусковые системы
- •12.4.1 - Пусковые системы авиационных ГТД
- •12.4.1.1 - Назначение
- •12.4.1.2 - Общие требования
- •12.4.1.3 - Состав пусковых систем
- •12.4.1.4 - Область эксплуатации двигателя, область запуска
- •12.4.1.6 - Надежность запуска
- •12.4.1.7 - Характеристики запуска
- •12.4.1.8. - Выбор типа и параметров стартера
- •12.4.1.9 - Особенности запуска двигателей двухроторных схем
- •12.4.1.10 - Системы зажигания
- •12.4.1.11 - Обеспечение характеристик запуска на разгоне
- •12.4.1.12 - Регулирование компрессора на пусковых режимах
- •12.4.2 - Особенности пусковых систем наземных ГТУ
- •12.4.4 - Перечень использованной литературы
- •12.5 - Воздушные системы ГТД
- •12.5.1 - Функции ВС
- •12.5.2 - Основные требования к ВС
- •12.5.3 - Общие и локальные ВС ГТД
- •12.5.4 - Работа локальных ВС
- •12.5.4.1 - ВС охлаждения турбин ГТД
- •12.5.4.2 - ВС наддува и охлаждения опор
- •12.5.4.2.1 - Работа ВС наддува и охлаждения опор
- •12.5.4.2.2 - Типы ВС наддува и охлаждения опор
- •12.5.4.2.3 - Построение общей схемы ВС наддува и охлаждения опор
- •12.5.4.3 - Противообледенительная система (ПОС)
- •12.5.4.4 - Система кондиционирования воздуха
- •12.5.4.5 - Система активного управления зазорами
- •12.5.4.6 - Системы внешнего охлаждения ГТД
- •12.5.4.7 - Системы внешнего обогрева ГТД
- •12.5.5 - Подготовка воздуха для ВС ГТД
- •12.5.6 - Особенности ВС наземных ГТУ
- •12.5.7 - Агрегаты ВС
- •12.5.9 - Перечень использованной литературы
- •12.6.1 - Общие требования
- •12.6.2 - Схемы маслосистем ГТД
- •12.6.2.1 - Маслосистема с регулируемым давлением масла
- •12.6.2.2 - Маслосистема с нерегулируемым давлением масла
- •12.6.2.3 - Маслосистемы ГТД промышленного применения
- •12.6.3 - Маслосистемы редукторов
- •12.6.3.1 - Маслосистемы авиационных редукторов
- •12.6.3.2 - Маслосистемы редукторов ГТУ
- •12.6.4 - Особенности проектирование маслосистем
- •12.6.5 - Агрегаты маслосистемы
- •12.6.5.1 - Бак масляный
- •12.6.5.2 - Насосы масляные
- •12.6.5.3 - Теплообменники
- •12.6.5.4 - Фильтры и очистители
- •12.6.5.5 - Воздухоотделители и суфлеры
- •12.6.6 - Перспективы развития маслосистем
- •12.6.8 – Перечень использованной литературы
- •12.7 - Гидравлические системы ГТД
- •12.7.1 - Гидросистемы управления реверсивными устройствами
- •12.7.1.1 - Централизованная гидросистема управления реверсивным устройством
- •12.7.1.2 - Автономная гидросистема управления реверсивным устройством
- •12.7.1.3 - Порядок проектирования гидросистем
- •12.7.3 - Перечень использованной литературы
- •12.8 - Дренажные системы
- •12.8.1 - Назначение и классификация систем
- •12.8.2 - Характеристика объектов дренажа
- •12.8.3 - Основные схемы и принцип действия систем
- •12.8.4 - Основные требования к дренажным системам
- •12.8.5 - Обеспечение работоспособности дренажных систем
- •12.8.6 - Особенности конструкции дренажных баков
- •12.8.8 - Перечень использованной литературы
- •Глава 13 - Обвязка авиационных ГТД
- •13.1 - Общая характеристика обвязки
- •13.2 - Конструкция обвязки
- •13.2.1 - Трубопроводные коммуникации
- •13.2.1.1 - Основные сведения
- •13.2.1.2 - Трубы и патрубки
- •13.2.1.3 - Соединения
- •13.2.1.4 - Компенсирующие устройства
- •13.2.1.5 - Соединительная арматура
- •13.2.1.6 - Узлы крепления
- •13.2.1.7 - Неисправности трубопроводов
- •13.2.2 - Электрические коммуникации
- •13.2.2.1 - Общие сведения
- •13.2.2.2 - Конструкция элементов
- •13.2.2.2.1 - Электрические жгуты
- •13.2.2.2.2 - Электрические провода
- •13.2.2.2.3 - Электрические соединители
- •13.2.2.2.4 - Материалы для изготовления электрических жгутов
- •13.2.3 - Узлы крепления агрегатов и датчиков
- •13.2.4 - Механическая проводка управления
- •13.3 - Проектирование обвязки
- •13.3.1 - Требования к обвязке
- •13.3.2 - Основные принципы и порядок проектирования обвязки
- •13.3.3 - Методы отработки конструкции обвязки
- •13.3.3.1 - Натурное макетирование
- •13.3.3.2 - Электронное макетирование обвязки
- •13.3.5 - Проектирование трубопроводных коммуникаций
- •13.3.6 - Проектирование электрических коммуникаций
- •13.3.6.1 - Требования к электрическим коммуникациям
- •13.3.6.2 - Порядок проектирования электрических коммуникаций
- •13.3.6.3 - Разработка электрических схем
- •13.3.6.4 - Разработка монтажных схем
- •13.3.6.5 - Разработка чертежей электрических жгутов
- •13.6 - Перечень использованной литературы
- •Глава 14 - Динамика и прочность ГТД
- •14.1 - Теоретические основы динамики и прочности ГТД
- •14.1.1 - Напряженное состояние, тензор напряжений
- •14.1.2 - Уравнения равновесия
- •14.1.3 - Перемещения в деформируемом твердом теле. Тензор деформаций
- •14.1.4 - Уравнения совместности деформаций
- •14.1.5 - Обобщенный закон Гука
- •14.1.7 - Плоская задача теории упругости
- •14.1.8 - Пластическая деформация материала. Простое и сложное нагружение
- •14.1.11 - Ползучесть. Релаксация напряжений. Длительная прочность
- •14.1.12 - Усталостное разрушение элементов конструкций
- •14.1.13 - Малоцикловая усталость. Термическая усталость
- •14.1.14 - Накопление повреждений при нестационарном нагружении
- •14.1.15 - Закономерности развития трещин в элементах конструкций
- •14.1.16 - Свободные колебания системы с одной степенью свободы
- •14.1.17 - Вынужденные колебания системы с одной степенью свободы
- •14.1.18 - Колебания системы с вязким сопротивлением. Демпфирование колебаний
- •14.1.19 - Вынужденные колебания системы с одной степенью свободы под действием произвольной периодической возмущающей силы
- •14.1.21 - Колебания системы с распределенной массой
- •14.2 - Статическая прочность и циклическая долговечность лопаток
- •14.2.1 - Нагрузки, действующие на лопатки. Расчетные схемы лопаток
- •14.2.2 - Напряжения растяжения в профильной части рабочей лопатки от центробежных сил
- •14.2.3 - Изгибающие моменты и напряжения изгиба от газодинамических сил
- •14.2.5 - Суммарные напряжения растяжения и изгиба в профильной части лопатки
- •14.2.6 - Температурные напряжения в лопатках
- •14.2.7 - Особенности напряженного состояния широкохордных рабочих лопаток
- •14.2.9 - Расчет соединения рабочих лопаток с дисками
- •14.2.10 - Расчет на прочность антивибрационных (бандажных) полок и удлинительной ножки лопатки
- •14.2.11 - Особенности расчета на прочность лопаток статора
- •14.2.13 - Анализ трехмерных полей напряжений и деформаций в лопатках
- •14.3 - Статическая прочность и циклическая долговечность дисков
- •14.3.1 - Расчетные схемы дисков
- •14.3.2 - Расчет напряжений в диске в плоской оссесимметричной постановке
- •14.3.3 - Общие закономерности напряженного состояния дисков
- •14.3.7 - Подтверждение циклического ресурса дисков на основе концепции допустимых повреждений
- •14.3.8 - Расчет роторов барабанного типа
- •14.3.9 - Расчет дисков радиальных турбомашин
- •14.3.10 - Оптимальное проектирование дисков. Равнопрочный диск
- •14.4 - Колебания и вибрационная прочность лопаток осевых компрессоров и турбин
- •14.4.2 - Приближенный расчет собственных частот колебаний лопаток
- •14.4.3 - Трехмерные модели колебаний лопаток
- •14.4.4 - Влияние конструктивных и эксплуатационных факторов на собственные частоты колебаний лопатки
- •14.4.6 - Автоколебания лопаток
- •14.4.7 - Демпфирование колебаний лопаток
- •14.4.8 - Вынужденные колебания лопаток. Резонансная диаграмма
- •14.4.9 - Математическое моделирование вынужденных колебаний лопаток
- •14.4.10 - Экспериментальное исследование колебаний лопаток
- •14.4.11 - Коэффициент запаса вибрационной прочности лопаток, пути его повышения
- •14.4.12 - Колебания дисков
- •14.5 - Динамика роторов. Вибрация ГТД
- •14.5.1 - Критическая частота вращения ротора. История вопроса
- •14.5.2 - Динамика одномассового ротора. Поступательные перемещения
- •14.5.3 - Динамика одномассового ротора. Угловые перемещения
- •14.5.4 - Динамика одномассового несимметричного ротора
- •14.5.5 - Ротор с распределенными параметрами
- •14.5.6 - Особенности колебаний системы роторов и корпусов
- •14.5.7 - Демпфирование колебаний роторов
- •14.5.7.1 - Конструкция и принцип действия демпферов колебаний роторов
- •14.5.7.2 - Расчет параметров демпфирования
- •14.5.7.3 - Особенности гидромеханики реальных демпферов
- •14.5.8 - Вибрация ГТД
- •14.5.8.1 - Источники возмущающих сил и спектр вибрации
- •14.5.8.3 - Статистические характеристики вибрации
- •14.5.8.4 - Измерение и нормирование вибрации
- •14.6 - Прочность корпусов и подвески двигателя
- •14.6.1 - Силовая схема корпуса. Условия работы силовых корпусов
- •14.6.4 - Устойчивость корпусных деталей
- •14.6.5 - Расчет корпусов на непробиваемость
- •14.6.6 - Расчет элементов подвески
- •14.8 – Перечень использованной литературы
- •Глава 15 - Шум ГТД
- •15.1 - Источники шума ГТД
- •15.3 - Методы оценки акустических характеристик
- •15.4 - Снижение шума ГТД
- •15.4.1 - Методология проектирования систем шумоглушения
- •15.4.2 - Шумоглушение в выходных устройствах авиационных ГТД
- •15.4.3 - Конструкция звукопоглощающих узлов авиационных ГТД
- •15.4.4 – Глушители шума в наземных ГТУ
- •15.4.5 – Конструкция глушителей шума наземных ГТД
- •15.7 – Список использованной литературы
- •Глава 16 - Газотурбинные двигатели как силовой привод
- •16.1 - ГТД в силовом приводе ГТЭС и ГПА
- •16.2 - ГТД в силовых (энергетических) установках кораблей и судов
- •16.3 - ГТД в силовых установках танков
- •16.5 - Компоновка корабельных и судовых ГГТД
- •16.6 - Компоновка ГТД в силовой установке танка
- •16.8 – Перечень использованной литературы
- •Глава 17 - Автоматизация проектирования и поддержки жизненного цикла ГТД
- •17.1 - Проектирование и информационная поддержка жизненного цикла ГТД (идеология CALS)
- •17.2 - Жизненный цикл изделия. Обзор методов проектирования
- •17.3 - Программные средства проектирования
- •17.4 - Аппаратные средства систем проектирования
- •17.5 - PDM-системы: роль и место в организации проектирования
- •17.6 - Организация производства и ERP-системы
- •17.7 - Параллельный инжиниринг. Интеграция эскизного и технического проектирования
- •17.8 - Переход на безбумажную технологию
- •17.10 - ИПИ-технологии и эксплуатация изделий
- •17.11 - ИПИ-технологии и управление качеством
- •17.12 - Анализ и реинжиниринг бизнес-процессов
- •17.13 - Основы трехмерного проектирования
- •17.13.1 - Общие принципы трехмерного проектирования
- •17.13.1.1 - Способы создания геометрических моделей
- •17.13.1.2 - Основные термины объемной геометрической модели
- •17.13.1.3 - Принцип базового тела
- •17.13.1.4 - Основные термины при проектировании геометрической модели детали
- •17.13.2 - Управляющие структуры
- •17.13.3 - Принцип «Мастер-модели»
- •17.13.5 - Моделирование сборок
- •17.15 - Перечень использованной литературы
- •Глава 18 - Уплотнения в ГТД
- •18.1 - Уплотнение неподвижных соединений
- •18.2 - Уплотнения подвижных соединений
- •18.2.1 - Гидравлический расчет уплотнений подвижных соединений
- •18.3 - Уплотнение газового тракта между ротором и статором ГТД
- •18.3.1 - Лабиринтные уплотнения
- •18.3.2 - Щеточные уплотнения
- •18.3.3 - Скользящие сухие уплотнения газодинамические
- •18.3.4 - Скользящие сухие уплотнения газостатические
- •18.3.5 - Сравнение эффективностей уплотнений газового тракта между ротором и статором ГТД
- •18.4 - Примеры уплотнений газового тракта ГТД
- •18.4.1 - Пример 1
- •18.4.2 - Пример 2. Уплотнение статорной и роторной частей турбины
- •18.5 - Уплотнения масляных полостей опор роторов, редукторов, коробок приводов
- •18.7 - Перечень использованной литературы

Глава 10 - Привод агрегатов, редукторы, муфты ГТД
|
n = 60 fi /( kz ± i) |
(10.6.5.1-1) |
ãäå fi |
- собственная частота |
|
|
изгибных колебаний колеса; |
|
k = 1; 2; 3;…- гармоника возбуждения изгиб- |
||
|
ных колебаний с зубцовой час- |
|
z |
тотой z; |
|
- число зубьев колеса; |
||
i |
- число упругих волн деформации |
|
|
на колесе (число узловых диа- |
|
|
метров) при колебаниях его по |
|
|
собственным формам (знак |
|
|
«плюс» соответствует резонан- |
|
|
су с назад бегущей волной; знак |
|
|
«минус» - резонансу с вперед |
|
|
бегущей волной). |
|
Из выражения (10.6.5.1.1) следует, что для одной собственной частоты изгибных колебаний зуб- чатого колеса fi ñ i узловыми диаметрами при его вращении возможны две резонансных частоты с одной гармоникой возбуждения. Наиболее опасна первая гармоника возбуждения зубцовой частоты, так как ее интенсивность выше, чем у последующих.
Не допускаются в качестве облегчения отверстия в диафрагме ЗК высоконапряженных и высокоскоростных передач, так как они приводят к периодическим изменениям жесткости зацепления зубьев. Зачистка острых кромок таких отверстий приводит к необходимости применения непроизводительного ручного труда. Кроме того, отверстия являются концентраторами напряжений.
При правильно выбранном расположении диафрагмы, толщине обода и изменении его толщины по длине зуба продольная модификация зубьев становится излишней. У ЗК косозубого зацепления диафрагму рекомендуется делать конусной для компенсации возможных деформаций, вызванных осевой силой.
Конические ЗК применяют в высокоскоростных ступенях вертолетных редукторов, а также в ЦП ГТД и в КПА для передачи мощности от вала двигателя на привод агрегатов. При передаче больших нагрузок с высокими окружными скоростями до 100 м/с и выше используются зубчатые переда- чи с круговыми зубьями, которые обеспечивают большую несущую способность и существенно улучшают плавность работы по сравнению с прямозубыми колесами.
Конические колеса с прямыми зубьями используются для передачи небольших крутящих моментов. Для уменьшения напряжений в ободе конического ЗК, наводимых колебаниями с вынуждающими частотами, в качестве демпфера
применяют коническую оболочку, упирающуюся в обод с небольшим натягом вдоль оси (см. Рис. 10.6.5.1_10). Демпфер на валу зубчатого колеса фиксируется штифтами или гайкой.
10.6.6 - Материалы зубчатых колес, способы упрочнения
Âкачестве материалов для зубчатых колес приводов агрегатов и редукторов ГТД используются комплексно легированные теплостойкие стали довольно узкой группы. Для придания рабочим поверхностям колес высокой прочности, твердости
èизносостойкости зубья и поверхности под установку подшипников, в большинстве случаев, подвергают ХТО - цементации, нитроцементации или азотированию.
Âпоследнее время разработаны методы и появилось оборудование для ионных процессов ХТО, которые позволяют сократить технологическое время выполнения процесса, исключить дополнительные циклы нагрева и охлаждения детали, значи- тельно снизить потребление электроэнергии
èтехнологического газа, уменьшить хрупкость слоя и деформации деталей при ХТО, повысить прочность и долговечность колес.
Для ЗК редукторов и не очень нагруженных колес приводов агрегатов ГТД обычно применяют сталь 12Х2Н4А-Ш. Она обеспечивает высокую прокаливаемость относительно крупных колес, имеет высокую прочность и вязкость сердцевины
èпониженную чувствительность к поверхностным дефектам. Реже используются стали 12ХН3А
è18Х2Н4ВА. Главным недостатком данных сталей является низкая теплостойкость. В современных ГТД нагруженность зубчатых передач значительно повысилась, возросли их рабочие температуры, что потребовало использования теплостойких азотируемых и цементируемых сталей. Этим условиям удовлетворяют стали с добавкой карбидообразрушающих элементов (Cr, W, Mo, V, Nb) и кремния. В таблице 10.6.6_1 приведены механические свойства и температуры отпуска некоторых сталей, применяемых для зубчатых колес.
Колеса внутреннего зацепления планетарных механизмов подвергают в основном азотированию, которое не приводит к значительной деформации
èкороблению детали, но обеспечивает меньшую глубину слоя (до 0,6 мм). Это позволяет отказаться от шлифования азотированных поверхностей или снимать при окончательном шлифовании детали слой в сотые доли миллиметра. Для них пригодны стали марок 38Х2МЮА, 20Х3МВФА, 30Х3МФ1, 40ХН2МА, ВКС7, ÂÊÑ-10.
656

Глава 10 - Привод агрегатов, редукторы, муфты ГТД
|
Прочность и теплостойкость сталей для зубчатых колес. |
Таблица 10.6.6_1 |
||||
|
|
|
||||
|
|
|
|
|
|
|
|
Температура |
|
Механические свойства |
|
|
|
Марка стали |
|
|
|
|
|
|
|
|
|
|
|
||
отпуска, îÑ |
σÂ, ÌÏà |
σ02, ÌÏà |
δ, % |
ψ, % |
|
|
|
|
|||||
|
|
|
|
|
|
|
12Х2Í4À-Ш |
150-170 |
1000 |
800 |
12 |
55 |
|
|
|
|
|
|
|
|
14ХÃÑÍ2ÌÀ |
150-220 |
1000 |
800 |
12 |
55 |
|
(ÄÈ-3À) |
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12Х2ÍÂÀФÀ |
200-250 |
1000 |
800 |
12 |
55 |
|
(ÝÈ712) |
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20Х3ÌÂФ-Ш |
250-300 |
1250 |
1050 |
12 |
55 |
|
(ÝÈ415) |
|
|||||
|
|
|
|
|
|
|
16Х3ÍÂФÌÁ-Ш(ÂÊÑ5) |
250-300 |
1300 |
1150 |
10 |
50 |
|
|
|
|
|
|
|
|
13Х3ÍÂÌ2Ф-Ш |
510-530 |
1200 |
1050 |
13 |
55 |
|
(ÂÊÑ4) |
|
|||||
|
|
|
|
|
|
|
16Х2Í3ÌФÁÀЮ-Ш |
200-250 |
1350 |
1210 |
12 |
54 |
|
(ÂÊÑ7) |
|
|||||
|
|
|
|
|
|
Способами упрочнения поверхностей зубьев методами пластического деформирования (ППД) можно достичь заметного увеличения несущей способности и долговечности зубчатых передач. Повышение эксплуатационных качеств зубчатых передач методами ППД происходит вследствие увеличения твердости и усталостной прочности поверхностного слоя, упрочненного ХТО, и обусловлено следующим:
-образованием в поверхностном слое полезных остаточных напряжений сжатия и улучшением их распределения по глубине слоя;
-уменьшением количества остаточного аустенита в подвергнутом ХТО слое;
-устранением механических повреждений поверхности от предшествующей обработки.
В качестве методов ППД для ЗК, прошедших ХТО, применяют дробеструйную обработку или виброупрочнение. В первом случае венец вращающегося зубчатого колеса обдувают стальной или чугунной дробью диаметром 0,4…2,0 мм. Создаваемые при дробеструйной обработке сжимающие напряжения достигают 100 кгс/мм2, чем повышается контактная и изгибная долговечность передач. Толщина наклепанного слоя может доходить до 1 мм. Шероховатость поверхности после ППД улучшается примерно вдвое. Дробеструйная обработка устраняет возникшие в процессе шлифования поверхностные растягивающие напряжения
èзаменяет их на сжимающие.
Виброобработкой достигаются те же цели, что при дробеструйной обработке. Метод заключает-
ся в создании импульсных колебаний контейнера с зубчатыми колесами, помещенными в среду из дроби.
10.7 - Англо-русский словарьминимум
acceleration - перегрузка
accessories drive shaft - вал привода агрегатов accessory gear box - коробка привода агрегатов (КПА)
adjustment, alignment - выверка
aeroengine manufacturing [production] - авиадвигателестроение
aeronautics - авиация allowance, admittance - допуск assembling - монтаж assembly - агрегат
altitude - наклон balance - балансировка band, range - диафрагма bearing - подшипник beatingбарботаж beating - биение bending - изгиб
bolt - болт boundary - граница bronze - бронза build - сборка
capability, data - данные cardanic - карданный carrier - поводок
657

Глава 10 - Привод агрегатов, редукторы, муфты ГТД
case, casing - корпус cavity - впадина certificate - паспорт clamp, clip - зажим
classification - классификация clearance - диапазон, зазор change - измерение
co-axial helicopter - вертолет соосной схемы collar - буртик
cone - конус
conjugation - сопряжение conicity, conical - конусность
corrosion-resistant - коррозионностойкий coupling, clutch - муфта
friction - фрикционная single-plate - однодисковая
safety decoupler – предохранительная, разъединительная
overrinding - свободного хода flexible coupling - упругая friction coupling - фрикционная
electro-magnetic - электромагнитная cover, cap - крышка, заглушка
crossing - пересечение curvature - кривизна damping - демпфирование decuplung - расцепление degree - градус
designконструкция, расчет diameter - диаметр
disk - äèñê
differential - дифференциальный dynamic(al) - динамический driven shaft - вал ведомый
drive [driving] shaft - вал ведущий driven - ведомый
driving - ведущий
dual (twin) rotor helicopter – двухвинтовой вертолет
durability - стойкость edge - кромка efficiency - ê.ï.ä. effort - ñèëà
elasticity - упругость
electro-magnetic coupling - электромагнитная муфта
[elektro] plating - гальванопокрытие engine - двигатель
epicyclic - планетарный equation - управление expression - формула fasteners - крепеж
fatigue life - усталостная долговечность fault - повреждение
film - пленка
flexible coupling - упругая муфта flexure - изгиб
flight - полет force - сила
shear - трения
centrifugal - центробежная frequency - частота
gearbox, gearing - зубчатые передачи reduction gearbox - редуктор
primary gearbox - главный main-rotor - несущего винта intermediate - промежуточный tail-rotor рулевого винта
spur reduction - с цилиндрическими шестер-
íÿìè
gearbox casing - картер редуктора gear train - передача зубчатая g-load - перегрузка
groove - канавка
hardening, tempering - закалка hardness - прочность
heat, heating - нагрев heat output - теплоотдача
heat-resistant - теплостойкий
hydraulic coupling - гидравлическая муфта hollow - полость, полый
input - âõîä
intermediate shaft - вал промежуточный internal stress - внутреннее напряжение jamming - заклинивание
kinematics - кинематика labyrinth - лабиринт landing - посадка
left, port - левый length - длина
lock - законтривать, замок locking - заклинивание lubricant oil, lubrication - смазка
lubrication system - маслосистема machine, mechanism - машина machined - механически обработанный maintenance - обслуживание
margin - запас
modulus elastic - модуль упругости motion - движение
mounting foot - лапа крепления noise - шум
nut - гайка
oil cooler - маслорадиатор oil filter - маслофильтр oil line - маслопровод
oil pump - маслонасос
oil specification - марка масла
658

Глава 10 - Привод агрегатов, редукторы, муфты ГТД
(oil) sump - маслоотстойник |
stiffness - жесткость |
|
oil tank - маслобак |
strength, stability - прочность |
|
operation - работа, эксплуатация |
stressнапряжение |
|
output shaft - вал выходной |
stress concentration - концентрация напряжений |
|
overall - габарит |
support - опора |
|
overlap - перекрытие |
surface - плоскость |
|
overrinding - муфта свободного хода |
surface stress - поверхностное напряжение |
|
packing - прокладка |
tail-rotor shaft - вал привода рулевого винта |
|
pin-fin - ребро |
take-off weigt - вес взлетный |
|
pitch - øàã |
tension stress - напряжение растяжения |
|
plate - пластина |
test, trial - испытание |
|
plug - пробка |
thermal expansion - тепловое расширение |
|
pointing - заострение |
thermal gap thickening - тепловой зазор |
|
pole - полюс |
thickening - загустевание |
|
pressure - давление |
thickness - толщина |
|
probability - вероятность |
thread - резьба |
|
probe - датчик |
tolerance - допуск |
|
propeller shaft - вал воздушного винта |
tooth -çóá |
|
radial - радиальный |
toothing - зубчатое зацепление |
|
replace, change - заменять |
torsion - кручение |
|
research - исследование |
torsion shaft - вал торсионный |
|
resistance - сопротивление |
transmission - вал трансмиссионный |
|
rigid coupling - жесткая муфта |
trim - центровка |
|
rolling - качение |
turning - проворачивание |
|
rotation, revolution - вращение |
twin-turbine helicopter - вертолет с двумя ГТД |
|
rounding - закругление |
twist - шаг винта |
|
safety decoupler - предохранительная муфта |
unbalance - дисбаланс |
|
screw - винт, завинчивать |
uniformity - однородность |
|
sealing - манжета |
use, usage, utilization - использование |
|
selection - выбор |
valve - êðàí |
|
separator - сепаратор |
vertical - вертикаль |
|
serrated joint - соединение зубчатое |
vibration, motion - вибрация |
|
serration shape - форма зуба |
viscosity - вязкость |
|
serviceability - исправность |
wear(ing) - износ |
|
service life - ресурс |
wear resistance - износостойкость |
|
shape - профиль |
wrench - ключ (гаечный) |
|
sharpening - заострение |
|
|
shear(ing) stress - напряжения среза |
|
|
single-rotor helicopter - одновинтовой вертолет |
10.8 - Перечень использованной |
|
skewness, slip - проскальзывание |
литературы |
|
skip - скачок |
||
10.8.1 Авиационные зубчатые передачи и редукто- |
||
sleve - гильза |
||
slippage, sideslip - скольжение |
ры. Справочник под ред. Вулгакова Э. Б. - М.: Ма- |
|
soundness - надежность |
шиностроение, 1981. |
|
speed - скорость |
10.8.2API 671 Муфты специального назначения для |
|
spline (d) shaft - вал шлицевой |
нефтеперерабатывающих предприятий. Вторая |
|
splinted connection - шлицевое соединение |
редакция. 1990. |
|
spring - пружина, рессора |
10.8.3 ГОСТ 24246-96 Муфты втулочные. Парамет- |
|
start(ing) - запуск |
ры, конструкция и размеры. |
|
steel - сталь |
10.8.4 ГОСТ 20761-96 Муфты фланцевые.Парамет- |
|
high-alloy - высоколегированная |
ры, конструкция, размеры. |
|
hardened steel - закаленная |
10.8.5 ГОСТ 5006-83 Муфты зубчатые. Техничес- |
|
carbonized - цементированная |
кие условия. |
|
sticking - заедание |
10.8.6 Гавриленко В.А. Зубчатые передачи в маши- |
659

Глава 10 - Привод агрегатов, редукторы, муфты ГТД
ностроении. - М.: Машгиз, 1962
10.8.7Кудрявцев В.Н.Планетарные передачи. - М.: Машиностроение, 1966.
10.8.8Кудрявцев В. Н. Державец Ю. А., Глухарев Е. Г. Конструкции и расчет зубчатых редукторов. Справочное пособие. - Л.:Машиностроение, 1971.
10.8.9Орлов П.И. Основы конструирования. Спра- вочно-Методическое пособие. - М.:Машиностроение, 1988.
10.8.10ÎÑÒ 41671-77 Колеса зубчатые цилиндри- ческие авиационные.Допуски.
10.8.11API 613 Редукторы специального назначе- ния для прменения в химической, нефтяной и газовой промышленности.Четвертое издание. 1995.
10.8.12Зубчатые передачи. Справочник. Гинсбург Е.Г., Голованов Н.Ф., Фирун Н.Б., Халебский Н.Т. - М.:Машиностроение, 1980.
10.8.13Кудрявцев В.Н. Зубчатые передачи. - М.:Машгиз, 1957.
10.8.14ÃÎÑÒ 16531-83 Передачи зубчатые цилиндрические. Термины, определения и обозначения.
660