
- •Содержание
- •Глава 1 - Общие сведения о газотурбинных двигателях
- •1.1 — Введение
- •1.2.1.2 — Турбовинтовые двигатели и вертолетные ГТД
- •1.2.1.3 — Двухконтурные турбореактивные двигатели (ТРДД)
- •1.2.1.4 — Двигатели для самолетов вертикального взлета и посадки
- •1.2.1.5 - Комбинированные двигатели для больших высот и скоростей полета
- •1.2.1.6 - Вспомогательные авиационные ГТД и СУ
- •1.2.2 - Авиационные СУ
- •1.2.3 - История развития авиационных ГТД
- •1.2.3.1 - Россия
- •1.2.3.2 - Германия
- •1.2.3.3 – Англия
- •1.3 - ГТД наземного и морского применения
- •1.3.1 - Области применения наземных и морских ГТД
- •1.3.1.1 -Механический привод промышленного оборудования
- •1.3.1.2 - Привод электрогенераторов
- •1.3.1.3 - Морское применение
- •1.3.2 - Основные типы наземных и морских ГТД
- •1.3.2.1 - Стационарные ГТД
- •1.3.2.2 - Наземные и морские ГТД, конвертированные из авиадвигателей
- •1.3.2.3 - Микротурбины
- •1.4 - Основные мировые производители ГТД
- •1.4.1 - Основные зарубежные производители ГТД
- •1.4.2 - Основные российские производители ГТД
- •1.6 - Перечень использованной литературы
- •Глава 2 - Основные параметры и требования к ГТД
- •2.1 - Основы рабочего процесса ГТД
- •2.1.1 - ГТД как тепловая машина
- •2.1.1.1 – Простой газотурбинный цикл
- •2.1.1.2 - Применение сложных циклов в ГТД
- •2.1.2 - Авиационный ГТД как движитель
- •2.1.3 - Полный к.п.д. и топливная эффективность (экономичность) ГТД
- •2.2 - Параметры ГТД
- •2.2.1 - Основные параметры авиационных ГТД
- •2.2.2 - Основные параметры наземных и морских приводных ГТД
- •2.3 - Требования к авиационным ГТД
- •2.3.1 - Требования к тяге (мощности)
- •2.3.2 – Требования к габаритным и массовым характеристикам
- •2.3.3 - Возможность развития ГТД по тяге (мощности)
- •2.3.4 - Требования к используемым горюче-смазочным материалам
- •2.3.4.1 - Топлива авиационных ГТД
- •2.3.4.2 – Авиационные масла
- •2.3.4.3 - Авиационные гидравлические жидкости
- •2.3.5 – Надежность авиационных ГТД
- •2.3.5.1 – Основные показатели
- •2.3.5.1.1 – Показатели безотказности, непосредственно влияющие на безопасность работы двигателя
- •2.3.5.2 – Методология обеспечения надежности
- •2.3.5.2.1 – Этап проектирования
- •2.3.6 - Ресурс авиационных ГТД
- •2.3.6.1 - Методология обеспечения ресурса
- •2.3.6.2 - Количественные показатели ресурса
- •2.3.7 - Требования производственной технологичности
- •2.3.8 - Требования эксплуатационной технологичности
- •2.3.8.1 - Эксплуатационная технологичность - показатель совершенства ГТД
- •2.3.8.2 - Основные качественные характеристики ЭТ
- •2.3.8.3 - Количественные показатели ЭТ
- •2.3.9 - Экономические требования к авиационным ГТД
- •2.3.9.1 - Себестоимость производства
- •2.3.9.2 - Стоимость ЖЦ двигателя
- •2.3.10 - Экологические требования
- •2.3.10.2 - Ограничения по шуму
- •2.3.12 - Соответствие требованиям летной годности
- •2.4 - Особенности требований к ГТД наземного применения
- •2.4.1 - Особенности требований к приводным ГТД для ГПА
- •2.4.1.1 - Требования к характеристикам ГТД
- •2.4.1.2 - Требования к ресурсам и надежности
- •2.4.1.4 - Используемые ГСМ
- •2.4.1.5 - Требования экологии и безопасности
- •2.4.1.6 - Требования производственной и эксплуатационной технологичности
- •2.4.2 - Особенности требований к ГТД энергетических установок
- •2.4.2.1 - Требования к характеристикам ГТД
- •2.4.2.2 - Используемые ГСМ
- •2.4.2.3 - Требования к ресурсам и надежности
- •2.4.2.4 - Требования к экологии и безопасности
- •2.4.2.5 - Требования к контролепригодности, ремонтопригодности и др.
- •2.5 - Методология проектирования
- •2.5.1 - Основные этапы проектирования ГТД
- •2.5.1.1 - Техническое задание
- •2.5.1.2 – Техническое предложение
- •2.5.1.3 – Эскизный проект
- •2.5.1.4 – Технический проект
- •2.5.1.5 – Разработка конструкторской документации
- •2.5.2 - Разработка конструкций ГТД на основе базовых газогенераторов
- •2.5.2.1 - Газогенератор – базовый узел ГТД
- •2.5.2.2 – Основные параметры и конструктивные схемы газогенераторов ГТД
- •2.5.2.3 – Создание ГТД различного назначения на базе единого газогенератора
- •2.6.1.1 — Общие положения по авиационным ГТД
- •2.6.1.2 — Общие положения по сертификации наземной техники
- •2.6.1.3 — Общие положения по сертификации производства и СМК
- •2.6.1.4 — Органы регулирования деятельности
- •2.6.1.4.1 — Авиационная техника
- •2.6.1.4.2 — Органы регулирования деятельности по сертификации производства и СМК
- •2.6.2.1 — Авиационная техника
- •2.6.2.2 — Наземная техника
- •2.6.2.3 Производство и СМК
- •2.6.2.4 — Принятые сокращения и обозначения
- •2.6.3.1 — Основные этапы создания авиационных ГТД
- •2.6.3.2 — Этапы процесса сертификации авиационных ГТД
- •Глава 3 - Конструктивные схемы ГТД
- •3.1 - Конструктивные схемы авиационных ГТД
- •3.1.1 - Турбореактивные двигатели
- •3.1.2 - Двухконтурные турбореактивные двигатели
- •3.1.3 - Турбовинтовые и вертолетные ГТД
- •3.2 - Конструктивные схемы наземных и морских ГТД
- •3.2.1 - Одновальные ГТД
- •3.2.2 - ГТД со свободной силовой турбиной
- •3.2.3 - ГТД со «связанным» КНД
- •3.2.4 - Конструктивные особенности наземных ГТД различного назначения
- •3.2.5 - Конструктивные особенности ГТД сложных циклов
- •3.4 - Перечень использованной литературы
- •Глава 4 - Силовые схемы ГТД
- •4.1 - Усилия, действующие в ГТД
- •4.1.2 - Крутящие моменты от газовых сил
- •Глава 5 - Компрессоры ГТД
- •6.4.4 - Корпуса КС
- •6.4.4.1 - Наружный корпус КС
- •6.4.4.2 - Внутренний корпус КС
- •6.4.4.3 - Разработка конструкции корпусов
- •6.4.5 - Системы зажигания ГТД
- •6.5 - Экспериментальная доводка КС
- •6.6 - Особенности КС двигателей наземного применения
- •6.7 - Перспективы развития камер сгорания ГТД
- •Глава 7 - Форсажные камеры
- •7.1 - Характеристики ФК
- •7.2 - Работа ФК
- •7.3 - Требования к ФК
- •7.4 - Схемы ФК
- •7.4.2 - Вихревые ФК
- •7.4.3 - ФК с аэродинамической стабилизацией
- •7.5 - Основные элементы ФК
- •7.5.1 - Смеситель
- •7.5.2 - Диффузоры
- •7.5.3 - Фронтовые устройства
- •7.5.4 - Корпусы и экраны
- •7.6 - Управление работой ФК
- •7.6.1 - Розжиг ФК
- •7.6.2 - Управление ФК на режимах приемистости и сброса
- •7.6.3 - Управление ФК на стационарных режимах
- •Глава 8 - Турбины ГТД
- •8.2 - Аэродинамическое проектирование турбины
- •8.2.2 - Технология одномерного проектирования турбины
- •8.2.4 - 2D/3D-моделирование невязкого потока в проточной части турбины
- •8.2.5 - 2D/3D-моделирование вязкого потока в турбине
- •8.2.6 - Синтез геометрии профилей и лопаточных венцов
- •8.2.7 - Одномерное проектирование турбины
- •8.2.7.1 - Выбор количества ступеней ТВД
- •8.2.7.2 - Выбор количества ступеней ТНД
- •8.2.7.3 - Аэродинамическое проектирование и к.п.д. турбины
- •8.2.9 - Методы управления пространственным потоком в турбине
- •8.2.10 - Экспериментальное обеспечение аэродинамического проектирования
- •8.2.11 - Перечень использованной литературы
- •8.3 - Охлаждение деталей турбины
- •8.3.1 - Тепловое состояние элементов турбин
- •8.3.1.1 - Принципы охлаждения
- •8.3.2 - Конвективное, пленочное и пористое охлаждение
- •8.3.3 - Гидравлический расчет систем охлаждения
- •8.3.4 - Методология расчета температур основных деталей турбин
- •8.3.5 - Расчет полей температур в лопатках
- •8.3.6 - Перечень использованной литературы
- •8.4 - Роторы турбин
- •8.4.1 - Конструкции роторов
- •8.4.1.1 - Диски турбин
- •8.4.1.2 - Роторы ТВД
- •8.4.1.3 - Роторы ТНД и СТ
- •8.4.1.4 - Примеры доводки и совершенствования роторов
- •8.4.1.5 - Предотвращение раскрутки и разрушения дисков
- •8.4.2 - Рабочие лопатки турбин
- •8.4.2.1 - Соединение рабочих лопаток с диском
- •8.4.3 - Охлаждение рабочих лопаток
- •8.4.4 - Перечень использованной литературы
- •8.5 - Статоры турбин
- •8.5.1 - Корпусы турбин
- •8.5.2 - Сопловые аппараты
- •8.5.3 - Аппараты закрутки
- •8.5.4 – Перечень использованной литературы
- •8.6 - Радиальные зазоры в турбинах
- •8.6.1 - Влияние радиального зазора на к.п.д. турбины
- •8.6.2 - Изменение радиальных зазоров турбины в работе
- •8.6.3 - Управление радиальными зазорами
- •8.6.4 - Выбор радиального зазора при проектировании
- •8.6.5 - Перечень использованной литературы
- •8.7 - Герметизация проточной части
- •8.7.1 - Герметизация ротора и статора от утечек охлаждающего воздуха
- •8.7.2 - Уплотнения между ротором и статором
- •8.7.3 - Перечень использованной литературы
- •8.8 - Материалы основных деталей турбины
- •8.8.1 - Диски и роторные детали турбины
- •8.8.2 - Сопловые и рабочие лопатки
- •8.8.3 - Покрытия лопаток
- •8.8.4 - Корпусы турбин
- •8.9.1 - Перечень использованной литературы
- •8.10.1 - Прогары и трещины лопаток ТВД
- •8.10.3 - Недостаточный циклический ресурс и поломки роторных деталей
- •8.10.4 - Устранение дефектов турбины в ходе доводки
- •8.11 - Перспективы развития конструкций и методов проектирования турбин
- •8.11.1 - 2D-аэродинамика: эффективные охлаждаемые лопатки ТВД
- •8.11.2 - 2D-аэродинамика: сокращение количества лопаток
- •8.11.3 - Противоположное вращение роторов ТВД и ТНД
- •8.11.4 - 2D-аэродинамика: эффективные решетки профилей ТНД
- •8.11.5 - 3D-аэродинамика: эффективные формы лопаточных венцов
- •8.11.6 - Новые материалы и покрытия для лопаток и дисков
- •8.11.7 - Совершенствование конструкций охлаждаемых лопаток
- •8.11.8 - Оптимизированные системы управления радиальными зазорами
- •8.11.9 - Развитие средств и методов проектирования
- •Глава 9 - Выходные устройства ГТД
- •9.1 - Нерегулируемые сопла
- •9.2 - Выходные устройства ТРДД
- •9.2.1 - Выходные устройства со смешением потоков
- •9.2.2 - Выходные устройства ТРДД с раздельным истечением потоков
- •9.3 - Регулируемые сопла
- •9.3.1 - Осесимметричные регулируемые сопла
- •9.3.1.1 - Регулируемое сопло двигателя Д30-Ф6
- •9.3.2 - Плоские сопла
- •9.4 - Выходные устройства двигателей самолетов укороченного и вертикального взлета-посадки
- •9.5 - «Малозаметные» выходные устройства
- •9.6 - Реверсивные устройства
- •9.6.1 - Реверсивные устройства ковшового типа
- •9.6.2 - Реверсивные устройства створчатого типа
- •9.6.3.1 - Гидравлический привод реверсивного устройства
- •9.6.3.3 - Механический замок фиксации положения реверсивного устройства
- •9.7 - Приводы выходных устройств
- •9.7.1 - Пневмопривод
- •9.7.2 - Пневмомеханический привод
- •9.8 - Выходные устройства диффузорного типа
- •9.8.1 - Конические диффузоры
- •9.8.2 - Осекольцевые диффузоры
- •9.8.3 - Улитки
- •9.8.4 - Соединения с выхлопными шахтами
- •9.8.5 - Выходные устройства вертолетных ГТД
- •9.12 - Перечень использованной литературы
- •Глава 10 - Привод агрегатов, редукторы, муфты ГТД
- •10.1 - Привод агрегатов ГТД
- •10.1.1 - Центральный привод
- •10.1.2 - Коробки приводов агрегатов
- •10.2 - Редукторы ГТД
- •10.2.1 - Редукторы ТВД
- •10.2.1.1 - Общие требования, кинематические схемы
- •10.2.1.2 - Конструкция редукторов ТВД
- •10.2.2 - Редукторы привода несущего и рулевого винтов вертолетов
- •10.2.2.1 - Редукторы привода несущего винта
- •10.2.2.1.1 - Кинематические схемы главных редукторов вертолетов
- •10.2.2.1.2 - Конструкция главных редукторов вертолетов
- •10.2.2.2 - Редукторы хвостовые и промежуточные
- •10.2.3 - Редукторы ГТУ
- •10.2.3.1 - Конструкция редукторов
- •10.3 - Муфты приводов ГТД и ГТУ
- •10.3.1 - Требования к муфтам
- •10.3.2 - Конструкция муфт
- •10.4 - Проектирование приводов агрегатов ГТД
- •10.4.1 - Проектирование центрального привода
- •10.4.1.1 - Конструкция центрального привода
- •10.4.2 - Проектирование коробок приводов агрегатов
- •10.4.2.1 - Конструкция коробки приводов агрегатов
- •10. 5 - Проектирование редукторов
- •10.5.1 - Особенности проектирования редукторов ТВД
- •10.5.2 - Особенности проектирования вертолетных редукторов
- •10.5.3 - Особенности проектирования редукторов ГТУ
- •10.6.1 - Требования к зубчатым передачам
- •10.6.2 - Классификация зубчатых передач
- •10.6.3 - Исходный производящий контур
- •10.6.4 - Нагруженность зубчатых передач
- •10.6.5 - Конструктивные параметры зубчатых передач
- •10.6.5.1 - Конструкции зубчатых колес
- •10.6.6 - Материалы зубчатых колес, способы упрочнения
- •Глава 11 - Пусковые устройства
- •11.1 - Общие сведения
- •11.1.1 - Основные типы пусковых устройств современных ГТД
- •11.1.2 - Технические характеристики пусковых устройств современных ГТД
- •11.2 - Электрические пусковые устройства ГТД
- •11.3 - Воздушные пусковые устройства ГТД
- •11.3.1 - Воздушно - турбинные пусковые устройства ГТД
- •11.3.2 - Регулирующие и отсечные воздушные заслонки
- •11.3.3 - Струйное пусковое устройство ГТД
- •11.4 - Турбокомпрессорные пусковые устройства ГТД
- •11.4.1 - Классификация ТКС ГТД
- •11.4.2 - Принцип действия ТКС
- •11.4.3 - Одновальный ТКС
- •11.4.4 - ТКС со свободной турбиной
- •11.4.5 - Особенности систем ТКС
- •11.5 - Гидравлические пусковые устройства ГТД
- •11.5.1 - Конструкция гидравлических стартеров
- •11.6 - Особенности пусковых устройств ГТД наземного применения
- •11.6.1 - Электрические пусковые устройства
- •11.6.2 - Газовые пусковые устройства
- •11.6.3 - Гидравлические пусковые устройства
- •11.7 - Редукторы пусковых устройств
- •11.8 - Муфты свободного хода пусковых устройств
- •11.8.1 - Муфты свободного хода роликового типа
- •11.8.2 – Муфты свободного хода храпового типа
- •11.9 – Системы смазки пусковых устройств
- •11.11 - Перечень используемой литературы
- •Глава 12 - Системы ГТД
- •12.1.1 - Системы автоматического управления и контроля авиационных ГТД
- •12.1.1.1 - Назначение САУ
- •12.1.1.2 - Состав САУ
- •12.1.1.3 - Основные характеристики САУ
- •12.1.1.5.2 - Порядок разработки САУ
- •12.1.1.5.3 - Основные принципы выбора варианта САУ в процессе проектирования
- •12.1.1.5.4 - Структурное построение САУ
- •12.1.1.5.5 - Программы управления ГТД
- •12.1.1.5.6 - Расчет и анализ показателей надежности
- •12.1.2 - САУ наземных ГТУ
- •12.1.2.1 - Назначение САУ
- •12.1.2.2 - Выбор САУ ГТУ и ее элементов
- •12.1.2.3 - Состав САУ ГТУ
- •12.1.2.4 - Основные характеристики САУ
- •12.1.2.5 - Работа САУ ГТУ
- •12.1.2.6 - Блок управления двигателем (БУД)
- •12.1.2.7 - Особенности системы контроля и диагностики наземных ГТД
- •12.1.4 – Перечень использованной литературы
- •12.2 - Топливные системы ГТД
- •12.2.1 - Топливные системы авиационных ГТД
- •12.2.1.1 - Назначение топливной системы
- •12.2.1.2 - Состав топливной системы
- •12.2.1.3 - Основные характеристики топливной системы
- •12.2.1.4 - Работа топливной системы
- •12.2.1.5 - Выбор топливной системы и ее элементов
- •12.2.1.5.1 – Выбор топливной системы
- •12.2.1.5.2 - Выбор насосов топливной системы
- •12.2.1.5.3 - Определение подогревов топлива в топливной системе
- •12.2.1.5.5 - Математическая модель топливной системы
- •12.2.1.6 - Гидроцилиндры
- •12.2.1.7 - Топливные фильтры
- •12.2.2 - Особенности топливных систем ГТУ
- •12.2.2.1 - Назначение топливной системы
- •12.2.2.2 - Выбор топливной системы и ее элементов
- •12.2.2.3 - Основные характеристики топливной системы
- •12.2.2.4 - Работа топливной системы
- •12.2.4 – Перечень использованной литературы
- •12.3 - Системы диагностики
- •12.3.1 - Общие вопросы диагностирования
- •12.3.1.1 - Задачи диагностирования ГТД
- •12.3.1.3 - Диагностируемые системы ГТД
- •12.3.1.4 - Виды наземного и бортового диагностирования ГТД
- •12.3.1.5 - Структура систем диагностики
- •12.3.1.6 - Регламент диагностирования ГТД
- •12.3.1.7 - Регистрация параметров ГТД
- •12.3.2 - Диагностирование системы механизации ГТД, САУ и ТП ГТД
- •12.3.3 - Диагностирование работы маслосистемы и состояния узлов ГТД, работающих в масле
- •12.3.3.1 - Неисправности маслосистемы и узлов ГТД, работающих в масле
- •12.3.3.2 - Диагностирование по параметрам маслосистемы
- •12.3.3.3 - Контроль содержания в масле частиц износа (трибодиагностика)
- •12.3.4 - Контроль и диагностика по параметрам вибрации ГТД
- •12.3.4.1 - Параметры вибрации и единицы изменения
- •12.3.4.2 - Статистические характеристики вибрации
- •12.3.4.3 - Причины возникновения вибрации в ГТД
- •12.3.4.4 - Датчики измерения вибрации
- •12.3.4.5 - Вибрационная диагностика ГТД
- •12.3.5 - Диагностирование ГТД по газодинамическим параметрам
- •12.3.5.1 - Неисправности проточной части ГТД
- •12.3.5.2 - Требования к перечню контролируемых параметров
- •12.3.5.3 - Алгоритмы диагностирования проточной части ГТД
- •12.3.6 - Обеспечение диагностирования ГТД инструментальными методами
- •12.3.6.1 - Виды неисправностей, выявляемых инструментальными методами
- •12.3.6.2 - Методы и аппаратура инструментальной диагностики
- •12.3.6.2.1 - Оптический осмотр проточной части ГТД
- •12.3.6.2.2 - Ультразвуковой метод диагностирования
- •12.3.6.2.3 - Вихретоковый метод диагностирования
- •12.3.6.2.4 - Капиллярный метод диагностирования с применением портативных аэрозольных наборов
- •12.3.6.2.5 - Диагностирование состояния проточной части ГТД перспективными методами
- •12.3.7 - Особенности диагностирования технического состояния ГТД наземного применения на базе авиационных двигателей
- •12.3.7.1 - Особенности режимов эксплуатации
- •12.3.7.2 - Общие особенности диагностирования наземных ГТД
- •12.3.7.3 - Особенности диагностирования маслосистемы
- •12.3.7.5 - Особенности диагностирования проточной части
- •12.4 - Пусковые системы
- •12.4.1 - Пусковые системы авиационных ГТД
- •12.4.1.1 - Назначение
- •12.4.1.2 - Общие требования
- •12.4.1.3 - Состав пусковых систем
- •12.4.1.4 - Область эксплуатации двигателя, область запуска
- •12.4.1.6 - Надежность запуска
- •12.4.1.7 - Характеристики запуска
- •12.4.1.8. - Выбор типа и параметров стартера
- •12.4.1.9 - Особенности запуска двигателей двухроторных схем
- •12.4.1.10 - Системы зажигания
- •12.4.1.11 - Обеспечение характеристик запуска на разгоне
- •12.4.1.12 - Регулирование компрессора на пусковых режимах
- •12.4.2 - Особенности пусковых систем наземных ГТУ
- •12.4.4 - Перечень использованной литературы
- •12.5 - Воздушные системы ГТД
- •12.5.1 - Функции ВС
- •12.5.2 - Основные требования к ВС
- •12.5.3 - Общие и локальные ВС ГТД
- •12.5.4 - Работа локальных ВС
- •12.5.4.1 - ВС охлаждения турбин ГТД
- •12.5.4.2 - ВС наддува и охлаждения опор
- •12.5.4.2.1 - Работа ВС наддува и охлаждения опор
- •12.5.4.2.2 - Типы ВС наддува и охлаждения опор
- •12.5.4.2.3 - Построение общей схемы ВС наддува и охлаждения опор
- •12.5.4.3 - Противообледенительная система (ПОС)
- •12.5.4.4 - Система кондиционирования воздуха
- •12.5.4.5 - Система активного управления зазорами
- •12.5.4.6 - Системы внешнего охлаждения ГТД
- •12.5.4.7 - Системы внешнего обогрева ГТД
- •12.5.5 - Подготовка воздуха для ВС ГТД
- •12.5.6 - Особенности ВС наземных ГТУ
- •12.5.7 - Агрегаты ВС
- •12.5.9 - Перечень использованной литературы
- •12.6.1 - Общие требования
- •12.6.2 - Схемы маслосистем ГТД
- •12.6.2.1 - Маслосистема с регулируемым давлением масла
- •12.6.2.2 - Маслосистема с нерегулируемым давлением масла
- •12.6.2.3 - Маслосистемы ГТД промышленного применения
- •12.6.3 - Маслосистемы редукторов
- •12.6.3.1 - Маслосистемы авиационных редукторов
- •12.6.3.2 - Маслосистемы редукторов ГТУ
- •12.6.4 - Особенности проектирование маслосистем
- •12.6.5 - Агрегаты маслосистемы
- •12.6.5.1 - Бак масляный
- •12.6.5.2 - Насосы масляные
- •12.6.5.3 - Теплообменники
- •12.6.5.4 - Фильтры и очистители
- •12.6.5.5 - Воздухоотделители и суфлеры
- •12.6.6 - Перспективы развития маслосистем
- •12.6.8 – Перечень использованной литературы
- •12.7 - Гидравлические системы ГТД
- •12.7.1 - Гидросистемы управления реверсивными устройствами
- •12.7.1.1 - Централизованная гидросистема управления реверсивным устройством
- •12.7.1.2 - Автономная гидросистема управления реверсивным устройством
- •12.7.1.3 - Порядок проектирования гидросистем
- •12.7.3 - Перечень использованной литературы
- •12.8 - Дренажные системы
- •12.8.1 - Назначение и классификация систем
- •12.8.2 - Характеристика объектов дренажа
- •12.8.3 - Основные схемы и принцип действия систем
- •12.8.4 - Основные требования к дренажным системам
- •12.8.5 - Обеспечение работоспособности дренажных систем
- •12.8.6 - Особенности конструкции дренажных баков
- •12.8.8 - Перечень использованной литературы
- •Глава 13 - Обвязка авиационных ГТД
- •13.1 - Общая характеристика обвязки
- •13.2 - Конструкция обвязки
- •13.2.1 - Трубопроводные коммуникации
- •13.2.1.1 - Основные сведения
- •13.2.1.2 - Трубы и патрубки
- •13.2.1.3 - Соединения
- •13.2.1.4 - Компенсирующие устройства
- •13.2.1.5 - Соединительная арматура
- •13.2.1.6 - Узлы крепления
- •13.2.1.7 - Неисправности трубопроводов
- •13.2.2 - Электрические коммуникации
- •13.2.2.1 - Общие сведения
- •13.2.2.2 - Конструкция элементов
- •13.2.2.2.1 - Электрические жгуты
- •13.2.2.2.2 - Электрические провода
- •13.2.2.2.3 - Электрические соединители
- •13.2.2.2.4 - Материалы для изготовления электрических жгутов
- •13.2.3 - Узлы крепления агрегатов и датчиков
- •13.2.4 - Механическая проводка управления
- •13.3 - Проектирование обвязки
- •13.3.1 - Требования к обвязке
- •13.3.2 - Основные принципы и порядок проектирования обвязки
- •13.3.3 - Методы отработки конструкции обвязки
- •13.3.3.1 - Натурное макетирование
- •13.3.3.2 - Электронное макетирование обвязки
- •13.3.5 - Проектирование трубопроводных коммуникаций
- •13.3.6 - Проектирование электрических коммуникаций
- •13.3.6.1 - Требования к электрическим коммуникациям
- •13.3.6.2 - Порядок проектирования электрических коммуникаций
- •13.3.6.3 - Разработка электрических схем
- •13.3.6.4 - Разработка монтажных схем
- •13.3.6.5 - Разработка чертежей электрических жгутов
- •13.6 - Перечень использованной литературы
- •Глава 14 - Динамика и прочность ГТД
- •14.1 - Теоретические основы динамики и прочности ГТД
- •14.1.1 - Напряженное состояние, тензор напряжений
- •14.1.2 - Уравнения равновесия
- •14.1.3 - Перемещения в деформируемом твердом теле. Тензор деформаций
- •14.1.4 - Уравнения совместности деформаций
- •14.1.5 - Обобщенный закон Гука
- •14.1.7 - Плоская задача теории упругости
- •14.1.8 - Пластическая деформация материала. Простое и сложное нагружение
- •14.1.11 - Ползучесть. Релаксация напряжений. Длительная прочность
- •14.1.12 - Усталостное разрушение элементов конструкций
- •14.1.13 - Малоцикловая усталость. Термическая усталость
- •14.1.14 - Накопление повреждений при нестационарном нагружении
- •14.1.15 - Закономерности развития трещин в элементах конструкций
- •14.1.16 - Свободные колебания системы с одной степенью свободы
- •14.1.17 - Вынужденные колебания системы с одной степенью свободы
- •14.1.18 - Колебания системы с вязким сопротивлением. Демпфирование колебаний
- •14.1.19 - Вынужденные колебания системы с одной степенью свободы под действием произвольной периодической возмущающей силы
- •14.1.21 - Колебания системы с распределенной массой
- •14.2 - Статическая прочность и циклическая долговечность лопаток
- •14.2.1 - Нагрузки, действующие на лопатки. Расчетные схемы лопаток
- •14.2.2 - Напряжения растяжения в профильной части рабочей лопатки от центробежных сил
- •14.2.3 - Изгибающие моменты и напряжения изгиба от газодинамических сил
- •14.2.5 - Суммарные напряжения растяжения и изгиба в профильной части лопатки
- •14.2.6 - Температурные напряжения в лопатках
- •14.2.7 - Особенности напряженного состояния широкохордных рабочих лопаток
- •14.2.9 - Расчет соединения рабочих лопаток с дисками
- •14.2.10 - Расчет на прочность антивибрационных (бандажных) полок и удлинительной ножки лопатки
- •14.2.11 - Особенности расчета на прочность лопаток статора
- •14.2.13 - Анализ трехмерных полей напряжений и деформаций в лопатках
- •14.3 - Статическая прочность и циклическая долговечность дисков
- •14.3.1 - Расчетные схемы дисков
- •14.3.2 - Расчет напряжений в диске в плоской оссесимметричной постановке
- •14.3.3 - Общие закономерности напряженного состояния дисков
- •14.3.7 - Подтверждение циклического ресурса дисков на основе концепции допустимых повреждений
- •14.3.8 - Расчет роторов барабанного типа
- •14.3.9 - Расчет дисков радиальных турбомашин
- •14.3.10 - Оптимальное проектирование дисков. Равнопрочный диск
- •14.4 - Колебания и вибрационная прочность лопаток осевых компрессоров и турбин
- •14.4.2 - Приближенный расчет собственных частот колебаний лопаток
- •14.4.3 - Трехмерные модели колебаний лопаток
- •14.4.4 - Влияние конструктивных и эксплуатационных факторов на собственные частоты колебаний лопатки
- •14.4.6 - Автоколебания лопаток
- •14.4.7 - Демпфирование колебаний лопаток
- •14.4.8 - Вынужденные колебания лопаток. Резонансная диаграмма
- •14.4.9 - Математическое моделирование вынужденных колебаний лопаток
- •14.4.10 - Экспериментальное исследование колебаний лопаток
- •14.4.11 - Коэффициент запаса вибрационной прочности лопаток, пути его повышения
- •14.4.12 - Колебания дисков
- •14.5 - Динамика роторов. Вибрация ГТД
- •14.5.1 - Критическая частота вращения ротора. История вопроса
- •14.5.2 - Динамика одномассового ротора. Поступательные перемещения
- •14.5.3 - Динамика одномассового ротора. Угловые перемещения
- •14.5.4 - Динамика одномассового несимметричного ротора
- •14.5.5 - Ротор с распределенными параметрами
- •14.5.6 - Особенности колебаний системы роторов и корпусов
- •14.5.7 - Демпфирование колебаний роторов
- •14.5.7.1 - Конструкция и принцип действия демпферов колебаний роторов
- •14.5.7.2 - Расчет параметров демпфирования
- •14.5.7.3 - Особенности гидромеханики реальных демпферов
- •14.5.8 - Вибрация ГТД
- •14.5.8.1 - Источники возмущающих сил и спектр вибрации
- •14.5.8.3 - Статистические характеристики вибрации
- •14.5.8.4 - Измерение и нормирование вибрации
- •14.6 - Прочность корпусов и подвески двигателя
- •14.6.1 - Силовая схема корпуса. Условия работы силовых корпусов
- •14.6.4 - Устойчивость корпусных деталей
- •14.6.5 - Расчет корпусов на непробиваемость
- •14.6.6 - Расчет элементов подвески
- •14.8 – Перечень использованной литературы
- •Глава 15 - Шум ГТД
- •15.1 - Источники шума ГТД
- •15.3 - Методы оценки акустических характеристик
- •15.4 - Снижение шума ГТД
- •15.4.1 - Методология проектирования систем шумоглушения
- •15.4.2 - Шумоглушение в выходных устройствах авиационных ГТД
- •15.4.3 - Конструкция звукопоглощающих узлов авиационных ГТД
- •15.4.4 – Глушители шума в наземных ГТУ
- •15.4.5 – Конструкция глушителей шума наземных ГТД
- •15.7 – Список использованной литературы
- •Глава 16 - Газотурбинные двигатели как силовой привод
- •16.1 - ГТД в силовом приводе ГТЭС и ГПА
- •16.2 - ГТД в силовых (энергетических) установках кораблей и судов
- •16.3 - ГТД в силовых установках танков
- •16.5 - Компоновка корабельных и судовых ГГТД
- •16.6 - Компоновка ГТД в силовой установке танка
- •16.8 – Перечень использованной литературы
- •Глава 17 - Автоматизация проектирования и поддержки жизненного цикла ГТД
- •17.1 - Проектирование и информационная поддержка жизненного цикла ГТД (идеология CALS)
- •17.2 - Жизненный цикл изделия. Обзор методов проектирования
- •17.3 - Программные средства проектирования
- •17.4 - Аппаратные средства систем проектирования
- •17.5 - PDM-системы: роль и место в организации проектирования
- •17.6 - Организация производства и ERP-системы
- •17.7 - Параллельный инжиниринг. Интеграция эскизного и технического проектирования
- •17.8 - Переход на безбумажную технологию
- •17.10 - ИПИ-технологии и эксплуатация изделий
- •17.11 - ИПИ-технологии и управление качеством
- •17.12 - Анализ и реинжиниринг бизнес-процессов
- •17.13 - Основы трехмерного проектирования
- •17.13.1 - Общие принципы трехмерного проектирования
- •17.13.1.1 - Способы создания геометрических моделей
- •17.13.1.2 - Основные термины объемной геометрической модели
- •17.13.1.3 - Принцип базового тела
- •17.13.1.4 - Основные термины при проектировании геометрической модели детали
- •17.13.2 - Управляющие структуры
- •17.13.3 - Принцип «Мастер-модели»
- •17.13.5 - Моделирование сборок
- •17.15 - Перечень использованной литературы
- •Глава 18 - Уплотнения в ГТД
- •18.1 - Уплотнение неподвижных соединений
- •18.2 - Уплотнения подвижных соединений
- •18.2.1 - Гидравлический расчет уплотнений подвижных соединений
- •18.3 - Уплотнение газового тракта между ротором и статором ГТД
- •18.3.1 - Лабиринтные уплотнения
- •18.3.2 - Щеточные уплотнения
- •18.3.3 - Скользящие сухие уплотнения газодинамические
- •18.3.4 - Скользящие сухие уплотнения газостатические
- •18.3.5 - Сравнение эффективностей уплотнений газового тракта между ротором и статором ГТД
- •18.4 - Примеры уплотнений газового тракта ГТД
- •18.4.1 - Пример 1
- •18.4.2 - Пример 2. Уплотнение статорной и роторной частей турбины
- •18.5 - Уплотнения масляных полостей опор роторов, редукторов, коробок приводов
- •18.7 - Перечень использованной литературы

Глава 1 - Общие сведения о газотурбинных двигателях
Первым массовым конвертированным ГТД стал ТРД «Avon» фирмы Rolls-Royce, устанавливавшийся на самолетах «Каравелла». С 1964 г. «Avon» используется как газогенератор для стационарной СТ производства фирмы «Cooper Bessemer». По аналогичной схеме впоследствии был конвертирован двухвальный газогенератор ТРДД RB211-24G. Мощность ГТУ, получивших обозначение Coberra 2000 и Coberra 6000, составила 14,5 и 27 МВт соответственно.
ÂÑÑÑÐ â 1970-е годы был разработан наземный ГТД НК-12СТ на базе одновального авиационного ТВД НК-12, который эксплуатировался на самолетах ТУ-95, ТУ-114 и АН-22. Конвертированный двигатель НК-12СТ мощностью 6,3 МВт был выполнен со свободной СТ и работает в составе многих ГПА и по сей день.
Âнастоящее время конвертированные авиационные ГТД различных производителей широко используются в энергетике, промышленности,
âморских условиях и на транспорте. Мощностной ряд – от нескольких сотен киловатт до 50 МВт.
Данный тип ГТД характеризуется наиболее высоким эффективным к.п.д. при работе в простом цикле, что обусловлено высокими параметрами и эффективностью узлов базовых авиадвигателей. ГТД LM6000PC фирмы General Electric
и TRENT фирмы Rolls-Royce имеют эффективный
ê.ï.ä. íà âàëó ÑÒ ηå = 42,8 %. ГТД TRENT к настоящему времени является наиболее мощным двигателем данного типа Ne = 52,6 ÌÂò.
1.3.2.3 - Микротурбины
В 1990-е годы за рубежом начали интенсивно разрабатываться энергетические ГТД сверхмалой мощности (от 30 до 200 кВт), названные микротурбинами. (Примечание: необходимо иметь в виду, что в зарубежной практике терминами «турбина», «газовая турбина», обозначается как отдельный узел турбины, так и ГТД в целом).
Особенности микротурбин обусловлены их исключительно малой размерностью и областью применения. Микротурбины используются в малой энергетике в составе компактных когенерационных установок (ГТУ-ТЭЦ) как автономные источники электрической и тепловой энергии. Микротурбины имеют максимально простую конструкцию - одновальная схема и минимальное количество деталей (см. Рис. 1.3.2.3_1). Используются одноступенчатый центробежный компрессор и одноступенчатая центростремительная турбина, выполненные в виде моноколес. Частота вращения ротора из-за малой размерности достигает
40000…120000 об/мин, поэтому применяются керамические и газостатические подшипники. Камера сгорания выполняется многотопливной и может работать на газообразном и жидком топливе. Конструктивно ГТД максимально интегрируется в энергетическую установку - ротор ГТД объединяется на одном валу с ротором высокочастотного электрического генератора.
К.п.д. микротурбин в простом цикле составляет 14…18%. Для повышения эффективности ча- сто используются регенераторы тепла выхлопных газов. К.п.д. микротурбины в регенеративном цикле достигает 28…32%.
Относительно низкая экономичность микротурбин объясняется малой размерностью
èневысокими параметрами цикла, которые применяются в данном типе ГТД для упрощения
èудешевления установок. Поскольку микротурбины работают в составе когенерационных установок (ГТУ-ТЭЦ), то низкая экономичность ГТД компенсируется повышенной тепловой мощностью, вырабатываемой мини «ГТУ-ТЭЦ» за счет тепла выхлопных газов. Коэффициент использования тепла топлива в этих установках достигает 80%.
1.4 - Основные мировые производители ГТД
В данном разделе дается краткий обзор крупнейших зарубежных и российских разработчиков, производителей авиационных, наземных и морских ГТД. Указываются марки наиболее массовых моделей ГТД и перспективные проекты, многие из которых приводятся в качестве примеров в этом пособии.
1.4.1 - Основные зарубежные производители ГТД
General Electric, ÑØÀ. Компания General Electric (GE) – крупнейший мировой производитель авиационных, наземных и морских ГТД. Отделение компании General Electric Aircraft Engines (GE AE) в настоящее время занимается разработкой и производством авиационных ГТД различных типов - ТРДД, ТРДДФ, ТВД и вертолетных ГТД. Диапазон тяг и мощностей этих двигателей очень широк: ТРДД от 40 до 512 кН, ТРДДФ от 80 до 190 кН, ТВД и вертолетные ГТД от 900 до 3500 кВт. GE AE участвует в совместных программах. Так, с французской компанией Snecma разрабатывается и производится семейство ТРДД CFM56, с фирмой Pratt & Whitney действует программа ТРДД
57

Глава 1 - Общие сведения о газотурбинных двигателях
Рисунок 1.3.2.3_1 - Микротурбина (модель TA-60 фирмы Elliot Energy Systems мощностью 60 кВт)
GP7000, с компанией Honeywell - программа ТРДД CFЕ738.
К наиболее массовым серийным авиационным двигателям и перспективным проектам можно отнести:
- ÒÐÄ – J85, J79;
- стационарные ГТД - PGT5, PGT10, PGT25, MS5000, MS6000, MS7000, MS9000.
Pratt & Whitney, ÑØÀ. Фирма Pratt & Whitney (PW) входит в состав компании United Technologies Corporations (UTC). В настоящее время PW занимается разработкой и производством авиационных
-ТВД и вертолетные ГТД – CT7, T58, T700; ТРДД средней и большой тяги: гражданских ТРДД
-ÒÐÄÄ – TF39, CF6-6, CF6-50, CF6-80C2, тягой от 70 до 440 кН и военных ТРДДФ в классе
GE90, CF34, CFM56 (совместно с Snecma);
-ТРДДФ – F101, F110, F404, F414, F120 (двигатель 5 поколения с элементами ДИЦ).
Отделение компании General Electric Energy разрабатывает и производит авиапроизводные стационарные ГТД для энергетического, механического и морского привода в диапазоне мощности от 2 до 300 МВт. Также это отделение осуществляет маркетинг и поставки всех типов наземных и морских ГТД фирмы GE.
Промышленные и морские ГТД представлены следующим рядом моделей:
-ГТД, конвертированные из авиадвигателей - LM500, LM1600, LM2000, LM2500, LM2500+, LM5000, LM6000;
тяги 100…170 кН. PW участвует в международной программе ТРДД V2500, совместно с GE в программе ТРДД GP7000.
Наиболее массовые серийные авиационные двигатели и перспективные проекты:
-ÒÐÄ(Ô) – J57, J75, J58;
-ТРДД – J52, JT3D, JT8D, JT9D, PW2000, PW4000, PW6000 (опытный), PW8000 (проект ТРДД c редуктором и сверхвысокой степенью двухконтурности),ADP(опытный ТВВД с закапотированным ВВ);
-ТРДДФ – TF30, F100, F119, PW7000 (перспективный проект на базе программы IHPTET), подъемно-маршевый ТРДДФ F135.
Отделение фирмы Pratt & Whitney Power Systems производит конвертированные наземные
58

Глава 1 - Общие сведения о газотурбинных двигателях
èморские ГТД на базе авиадвигателей PW и PWC мощностью от 0,4 до 28 МВт.
Наземные и морские ГТД представлены следующим рядом моделей: ST5, ST6L, ST18A, ST30, ST40, FT8.
Pratt & Whitney Canada, (Канада). Фирма Pratt & Whitney Canada (PWC) также входит в состав компании UTC в группу PW. PWC занимается разработкой и производством малоразмерных ТРДД, ТВД и вертолетных ГТД. Большинство ТРДД находятся в классе тяги 10…33 кН. Проект новейшего ТРДД PW800 рассчитан на класс тяги 44…84 кН. Разработаны и разрабатываются ТВД
èвертолетные ГТД мощностью от 400 до 3800 кВт. Наиболее массовые серийные авиационные
двигатели и перспективные проекты:
-ТРДД – JT15D, PW300, PW500, PW800 (проект ТРДД с редукторным приводом вентилятора);
-ТВД и вертолетные ГТД – PT6A, PW100, PW200. Ряд конвертированных из базовых ТВД и вер-
толетных ГТД промышленных двигателей мощностью 400…4000 кВт.
Rolls-Royce (Великобритания). Компания Rolls-Royce (RR) в настоящее время разрабатывает и производит широкий спектр ГТД авиационного, наземного и морского применения - гражданские ТРДД в диапазоне тяг от 60 до 420 кН, ТВД и вертолетные ГТД мощностью от 600 до 4500 кВт, а также подъемно-маршевые двигатели семейства Pegasus в классе тяги 95…106 кН.
RR принимает долевое участие во многих европейских и международных программах:
-в разработке и производстве военных ТРДДФ RB199, EJ200, подъемного вентилятора для СУ истребителя JSF;
-ТВД и вертолетных ГТД семейства RTM 322
âклассе мощности 1500…2200 кВт совместно с фирмой Turbomeca.
Ранее RR совместно с компанией Snecma разрабатывала и производила ТРДФ «Олимп» тягой 140…170 кН для сверхзвукового пассажирского самолета «Конкорд».
Наиболее массовые серийные авиационные двигатели и перспективные проекты:
-ÒÐÄ – Derwent, Nene, Avon, Viper;
-ТВД и вертолетные ГТД – Dart, Gazelle, Gem, Gnome, Tyne;
-ÒÐÄÄ – Conway, Spey, RB211-24/524/535, Tay, Trent 500/700/800/900;
-ТРДДФ – Adour, RB199, EJ200 (совместно с европейскими фирмами);
-подъемно-маршевый ТРДД – Pegasus. Широким спектром моделей для механическо-
го, энергетического и морского привода представлены ГТД наземного применения. Эти двигатели
мощностью от 4 до 58 МВт - 501, 601,Avon, Coberra, Trent 50 - созданы конвертацией авиационных прототипов.
Honeywell (ÑØÀ). Компания Honeywell занимается разработкой и производством авиационных ГТД - ТРДД и ТРДДФ в малом классе тяги 15…40 кН, ТВД и вертолетных ГТД в классе мощности 450…2100 кВт.
Наиболее массовые авиационные двигатели:
-ТВД и вертолетные ГТД – T53, T55, LTS101, LTP101, TPE331, T800;
-ÒÐÄÄ –ALF502,AS900,ATF3, LF507, TFE731;
-ТРДДФ – TPE1042.
Snecma (Франция). Компания Snecma занимается разработкой и производством авиационных ГТД - военных ТРДДФ в классе тяги 75…90 кН и гражданских ТРДД совместно с компанией GE (семейства ТРДД CFM56 и GE90). Совместно с фирмой Turbomeca участвует в программе ТРДД Larzac в классе тяги 14 кН. Совместно с фирмой Rolls-Royce разрабатывала и производила ТРДФ «Олимп».
Наиболее массовые серийные авиационные двигатели и перспективные проекты:
-ÒÐÄÔ – Atar;
-ÒÐÄÄ – CFM56-2/3/5/7 и GE90 (совместно c GE AE), Larzac (совместно с фирмой Turbomeca), перспективный ТРДД в рамках программы Tech56;
-ТРДДФ – M53, M88.
Turbomeca (Франция). Фирма Turbomeca в основном разрабатывает и выпускает ТВД и вертолетные ГТД малой и средней мощности от 400 до 1600 кВт. Совместно с компанией RR участвует в программе ГТД RTM322 в классе мощности 1500…2200 кВт.
Наиболее массовые серийные авиационные двигатели и перспективные проекты:
-ТВД и вертолетные ГТД – Arriel, Arrius, Artouste, Astazou, Bastan, Makila, TM 333.
Siemens (ÔÐÃ). Профилем этой крупной фирмы являются стационарные наземные ГТД для энергетического и механического привода и морского применения в широком диапазоне мощности от 4 до 300 МВт.
Основные марки разрабатываемых и выпускаемых ГТД:
-Typhoon, Tornado, Tempest, Cyclone, GT35, GT10B/C, GTX100, V64.3A, V94.2, V94.2A, V94.3A, W501D5A, W501F, W501G.
Alstom (Франция, Великобритания). Компания Alstom разрабатывает и производит стационарные одновальные энергетические ГТД в диапазоне мощности 50…270 МВт.
Основные марки ГТД - GT8C2, GT11N2, GT13E2, GT24, GT26.
59

Глава 1 - Общие сведения о газотурбинных двигателях
Solar (ÑØÀ). Фирма Solar входит в состав компании Caterpillar и занимается разработкой и производством стационарных ГТД малой мощности от 1 до 15 МВт для энергетического и механического привода и морского применения.
Основные марки ГТД - Saturn 20, Centaur 40/ 50, Taurus 60/70, Mars 90/100, Titan 130.
ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко» (Украина, г. Запорожье). Государственное предприятие «Запорожское машиностроительное конструкторское бюро «Прогресс» имени академика А.Г. Ивченко» специализируется на разработке, изготовлении опытных образцов и сертификации авиационных ГТД - ТРДД в диапазоне тяги 17…230 кН, самолетные ТВД и вертолетные ГТД мощностью 1000…10000 кВт, а также промышленные наземные ГТД мощностью от 2,5 до 10000 кВт. Двигатели разработки «ЗМКБ «Прогресс» серийно выпускаются в ОАО «Мотор Сич» (Украина, г. Запорожье).
Наиболее массовые серийные авиационные двигатели и перспективные проекты:
-ТВД и вертолетные ГТД – АИ-20, АИ-24, Д-27 (ТВВД с открытым ВВ);
-ÒÐÄÄ – ÀÈ-25, ÄÂ-2, Ä-36, Ä-18Ò, Ä-436Ò1/ Ò2/ÒÏ.
Наземные ГТД:
-Ä-336-1/2, Ä-336-2-8, Ä-336-1/2-10.
НПП «Машпроект» (Украина, г. Николаев).
Научно-производственное предприятие «ЗоряМашпроект» (Украина, г. Николаев) разрабатывает и производит ГТД для морских СУ, а также наземные ГТД для энергетического и механического привода. Наземные двигатели являются модификациями моделей морского применения. Класс мощности ГТД: 2…30 МВт. С 1990 г.г. НПП «ЗоряМашпроект» разрабатывает также стационарный одновальный энергетический двигатель UGT-110 мощностью 110 МВт .
Основные модели ГТД:
- UGT-2500, UGT-3000, UGT-6000, UGT-10000, UGT-15000, UGT-160000, UGT-250000, UGT-110 (совместно с НПО «Сатурн», Россия).
1.4.2 - Основные российские производители ГТД
Ниже приведены основные российские пред- приятия-разработчики ГТД, расположенные в алфавитном порядке.
ОАО «Авиадвигатель» (г.Пермь). Разрабатывает, изготавливает и сертифицирует авиационные ГТД - гражданские ТРДД в классе тяги 52…200 кН для магистральных самолетов, военные ТРДДФ в классе тяги 152…194 кН, вертолетные ГТД, а так-
же авиапроизводные наземные промышленные ГТД для механического и энергетического привода в классе мощности 2,5…30 МВт. Серийное производство ТРДД разработки ОАО «Авиадвигатель» осуществляет ОАО «Пермский моторный завод» (ОАО ПМЗ, г.Пермь) и ОАО«НПО Сатурн» (г. Рыбинск). Промышленные ГТД серийно выпускаются на ОАО ПМЗ.
ОАО «Авиадвигатель» и ОАО ПМЗ составляют ядро созданного в конце 2003 г. «Пермского центра авиадвигателестроения» во главе с управляющей компанией «Пермский моторостроительный комплекс».
Наиболее массовые серийные авиационные двигатели и перспективные проекты:
-ÒÐÄÄ – Д-20П, Д-30, Д-30КУ/КП, Д-30КУ- 154, Д-30-В10, ПС-90А, ПС-90А2, ПС-90А12 (проект), ПС-12 (проект ТРДД 5 поколения);
-ТРДДФ – Ä-30Ô6;
-вертолетные ГТД – Ä-25Â.
ГТД наземного применения представлены широким спектром моделей для механического
èэнергетического привода. Наземные двигатели, созданные конвертацией авиационных двигателей Д-30 и ПС-90А - ГТУ-2,5П, ГТУ-4П, ГТУ-6П, ГТУ10П, ГТУ-12П, ГТУ-16П, ГТУ-25П, ГТЭ-180 (проект совместно с ОАО ЛМЗ).
ГУНПП «Завод имени В.Я.Климова» (г.Санкт-Петербург). Государственное унитарное научно-производственное предприятие «Завод им.В.Я.Климова» в последние годы специализируется на разработке и производстве авиационных ГТД. Номенклатура разработок широка - военные ТРДДФ в классе тяги 81…98 кН, самолетные ТВД
èвертолетные ГТД в классе мощности 1200…2600 кВт; танковые ГТД в классе мощности 700…900 кВт, а также конвертированных промышленных ГТД на базе ТВД и вертолетных ГТД в классе мощности 0,8…2,5 МВт.
Наиболее массовые серийные авиационные
èназемные двигатели и перспективные проекты:
-ÒÐÄ(Ô) – ÂÊ-1, ÂÊ-1Ô;
-ТРДДФ – ÐÄ-33, ÐÄ-133;
-ТВД и вертолетные ГТД – ÃÒÄ-350, ÒÂ2-117, ÒÂ3-117, ÒÂ7-117, ÂÊ-3500;
-танковые ГТД – ÃÒÄ-1000Ò/ÒÔ, ÃÒÄ-1250;
-наземные энергетические ГТД: ÃÒÏ-0,8; ÃÒÏ-1,25; ÃÒÏ-1,6; ÃÒÏ-2,5.
ОАО «ЛМЗ» (г. Санкт-Петербург). ОАО «Ленинградский Металлический завод» разрабатывает и производит стационарные энергетические ГТД в классе мощности 100…180 МВт.
Основные марки ГТД - ГТЭ-100 (двигатель сложного цикла с промежуточным охлаждением
èпромежуточным подогревом), ÃÒÝ-150, ÃÒÝ-180
60

Глава 1 - Общие сведения о газотурбинных двигателях
(проект совместно с ОАО «Авиадвигатель»).
ФГУП «Мотор» (г. Уфа). Федеральное государственное унитарное предприятие «Научно-про- изводственное предприятие «Мотор» занимается разработкой военных ТРД и ТРДФ для истребителей и штурмовиков.
Основные авиационные ГТД - Р13-300, Р25-300, Р95Ш, Р195.
В 1990-е годы на базе двигателя Р195 разработана энергетическая установка ГТЭ-10/95 мощностью 10 МВт.
«Омское МКБ» (г. Омск). АО «Омское моторостроительное конструкторское бюро» занимается разработкой малоразмерных ГТД и вспомогательных СУ.
Основные двигатели разработки «Омского МКБ»:
-вспомогательные ГТД - ÂÑÓ-10, ÂÃÒÄ-43;
-ÒÂÄ - ÒÂÄ-10, ÒÂÄ-20;
-вертолетные ГТД - ÃÒÄ-3, ÒÂ-0-100;
-ÒÐÄÄ - ТРДД-50 (проект).
ОАО «НПО «Сатурн» (г. Рыбинск). ÎÀÎ «Научно-производственное объединение «Сатурн» в последние годы разрабатывает и производит военные ТРДДФ в классе тяги 122…175 кН, ТВД и вертолетные ГТД мощностью 1000…1100 кВт, а также конвертированные наземные ГТД мощностью от 4 до 20 МВт. Совместно с НПО «Машпроект» (Украина) участвует в программе энергетического одновального ГТД мощностью 110 МВт. Совместно с компанией Snecma разрабатывает ТРДД для региональных самолетов в классе тяги 50…70 кН. Серийное производство военных ТРДДФ осуществляется на серийных заводах - в уфимском ОАО «УМПО» и московском ФНПЦ «Салют»
Наиболее массовые серийные авиационные двигатели и перспективные проекты:
-ÒÐÄ(Ô) – ÀË-7Ô, ÀË-21Ô, ÂÄ-7, ÐÄ-36-41, ÐÄ-36-51;
-ТРДДФ – АЛ-31Ф, АЛ-41Ф (опытный двигатель 5 поколения);
-ТРДД – SM146 (совместный проект с компанией Snecma);
-ТВД и вертолетные ГТД – РД-600, ТВД-1500. Наземные ГТД - АЛ-31СТ, АЛ-31СТЭ, ГТД-4,
ГТД-6, ГТД-8, ГТД-6,3 (проект), ГТД-10 (проект), ГТД-110 (совместно с НПО «Машпроект»).
ОАО «СНТК им. Н.Д. Кузнецова». ОАО «Самарский научно-технический комплекс им. Н.Д.Кузнецова» разрабатывает и выпускает авиационные ГТД (ТВД, ТРДД, ТРДДФ) и наземные ГТД, конвертированные из авиадвигателей. Предприятие имеет самый большой опыт среди российских предприятий в разработке наземных ГТД для га-
зовой промышленности. Продукция этого предприятия серийно эксплуатируется с 1974 года. В последние годы ведется доводка ТВВД НК-93 с двухрядным закапотированным ВВ, а также разработка новых моделей наземных ГТД.
Основные авиационные ГТД разработанные ОАО «СНТК им. Н.Д. Кузнецова»:
-ÒÂÄ – ÍÊ-12ÌÂ, ÍÊ-4;
-ÒÐÄÄ – НК-8-4, НК-8-2/2У, НК-86, НК-88 (на криогенном топливе);
-ТРДДФ – ÍÊ-22, ÍÊ-25, ÍÊ-144, ÍÊ-32;
-ÒÂÂÄ – НК-93 (опытные двигатели). Наземные ГТД - НК-12СТ, НК-16СТ, НК-36СТ,
ÍÊ-38ÑÒ, ÍÊ-14ÑÒ (Ý).
АМНТК «Союз» (г. Москва). ОАО «Авиамоторный научно-технический комплекс «Союз» разрабатывает и изготавливает авиационные ГТД - ТРД, ТРДФ, подъемно-маршевые ТРДДФ.
Основные авиационные ГТД:
-ÒÐÄ – ÀÌ-3 (ÐÄ-3), ÀÌ-5;
-ÒÐÄÔ – ÐÄ-9, Ð11-300, Ð15-300, Ð27-300;
-ТРДДФ – Р79 (подъемно-маршевый двигатель для СВВП Як-141).
Тушинское МКБ «Союз» (г. Москва). Государственное предприятие «Тушинское машиностроительное конструкторское бюро «Союз» занимается доводкой и модернизацией военных ТРДФ - Ð27-300, Ð35-300, Ð29-300. Â 1992 ã. íà áàçå Ð29-300 разработана ГТУ 55ÑÒ-20 мощностью 20 МВт для привода электрогенераторов.
1.5- Англо-русский словарьминимум
[air] inlet – воздухозаборник
aeroderivative gas turbine – ГТД наземного применения, конвертированный из АД
augmentor – форсажная камера
auxillary power unit (APU) – вспомогательная силовая установка
booster – подпорные ступени combustor – камера сгорания compressor – компрессор engine – двигатель
air-breathing e. – воздушно-реактивный д. combustion e. – ГТД наземного применения gas-turbine e. – газотурбинный д.
lift e. – подъемный д. piston e. – поршневой д.
varied cycle e.– д. изменяемого цикла exit nozzle – реактивное сопло
fan – вентилятор
fan duct – канал наружного контура
frame (industrial) gas turbine – стационарный ГТД
61