Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3_0_Konspekt_lektsiy.doc
Скачиваний:
70
Добавлен:
22.02.2016
Размер:
1.28 Mб
Скачать

Розділ 2. Випадкові величини

Тема 5. Дискретні випадкові величини та їх розподіли

1. Випадкова величина

Вже в першій частині наводились події, що полягають в появі того або іншого числа. Наприклад, при киданні гральної кістки могли з’явитися числа 1, 2, 3, 4, 5 і 6. Наперед визначити число очок, що випали, неможливо, оскільки воно залежить від багатьох випадкових причин, які повністю не можуть бути враховані. В цьому значенні число очок є величина випадкова, а числа 1, 2, 3, 4, 5 і 6 є можливі значення цієї величини.

Випадковоюназивають величину, яка унаслідок випробування прийме одне і лише одне можливе значення, наперед не відоме і залежне від випадкових причин, які заздалегідь не можуть бути враховані.

Приклад 1.Число хлопчиків, що народилися, серед ста новонароджених є випадкова величина, яка має наступні можливі значення: 0, 1, 2, ..., 100.

Приклад 2.Відстань, яку пролетить снаряд при пострілі із гармати, є випадкова величина. Дійсно, відстань залежить не тільки від установки прицілу, але і від багатьох інших причин (сили і напряму вітру, температури тощо), які не можуть бути повністю враховані. Можливі значення цієї величини належать деякому проміжку (а, b).

Будемо далі позначати випадкові величини прописними буквами X, Y, Z, а їх можливі значення - відповідними рядковими буквами x, y, z. Наприклад, якщо випадкова величина Х має три можливі значення, то вони будуть позначені так: x1, x2, x3.

2. Дискретні і неперервні випадкові величини

Повернемося до прикладів, приведених вище. В першому з них випадкова величина Х могла прийняти одне із наступних можливих значень: 0, 1, 2, ..., 100. Ці значення відокремлені одне від одного проміжками, в яких немає можливих значень Х. Таким чином, в даному прикладі випадкова величина приймає окремі, ізольовані можливі значення. В другому прикладі випадкова величина могла прийняти будь-яке із значень проміжку (а, b). Тут не можна відділити одне можливе значення від іншого проміжком, що не вміщує можливих значень випадкової величини.

Уже із сказаного можна зробити висновок про доцільність розрізняти випадкові величини, що приймають лише окремі, ізольовані значення, і випадкові величини, можливі значення яких суцільно заповнюють деякий проміжок.

Дискретною (переривчастою)називають випадкову величину, яка приймає окремі, ізольовані можливі значення з певними ймовірностями. Число можливих значень дискретної випадкової величини може бути кінцевим або нескінченним.

Неперервноюназивають випадкову величину, яка може приймати всі значення з деякого кінцевого або нескінченного проміжку. Очевидно, число можливих значень безперервної випадкової величини нескінченне.

Зауваження. Наведене вище визначення неперервної випадковою величини не є точним. Більш суворе визначення буде дано пізніше.

3. Закон розподілу ймовірностей дискретної випадкової величини

На перший погляд може здатися, що для завдання дискретної випадкової величини достатньо перерахувати всі її можливі значення. Насправді це не так: випадкові величини можуть мати однакові переліки можливих значень, а ймовірності їх - різні. Тому для завдання дискретної випадкової величини недостатньо перерахувати всі можливі її значения, потрібно ще указати їх ймовірності.

Законом розподілу дискретної випадкової величининазивають відповідність між можливими значеннями і їх ймовірностями; його можна задати таблично, аналітично (у вигляді формули) і графічно.

При табличному завданні закону розподілу дискретної випадкової величини перший рядок таблиці утримує можливі значення, а другий - їх ймовірності:

X

x1

x2

xn

p

p1

p2

pn

Взявши до уваги, що в одному випробуванні випадкова величина приймає одне і лише одне можливе значення, робимо висновок, що події Х=х1, Х=х2, ..., X=хn, утворюють повну групу; отже, сума ймовірностей цих подій, тобто сума ймовірностей другого рядка таблиці, дорівнює одиниці:

p1+p2+...+pn=1.

Якщо безліч можливих значень Х нескінченна (рахунково), то ряд p1+p2+... сходиться і його сума дорівнює одиниці.

Приклад.В грошовій лотереї випущено 100 квитків. Розігрується один виграш в 50 грн. і десять виграшів по 1 грн. Знайти закон розподілу випадкової величини Х - вартості можливого виграшу для власника одного лотерейного квитка.

Рішення. Напишемо можливі значення Х: х1=50, х2=1, х3=0. Ймовірності цих можливих значень такі: p1=0,01, р2=0,1, р3=1-(р12)=0,89.

Напишемо шуканий закон розподілу:

Х

50

1

0

р

0,01

0,1

0,89

Контроль: 0,01+0,1+0,89=1.

Для наочності закон розподілу дискретної випадкової величини можна зобразити і графічно, для чого в прямокутній системі координат будують точки (хі, рі), а потім з’єднують їх відрізками прямих. Отриману фігуру називаютьбагатокутником розподілу.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]