Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3_0_Konspekt_lektsiy.doc
Скачиваний:
136
Добавлен:
22.02.2016
Размер:
1.28 Mб
Скачать

Тема 4. Повторні незалежні випробування за схемою бернуллі

1. Формула Бернуллі.

2. Локальна теорема Лапласа.

3. Інтегральна теорема Лапласа.

4.1. Формула Бернуллі

Якщо проводиться декілька випробувань, причому ймовірність події А в кожному випробуванні не залежить від результатів інших випробувань, то такі випробування називають незалежнимищодо події А.

В різних незалежних випробуваннях подія А може мати або різні, або одну і ту ж ймовірність. Будемо далі розглядати лише такі незалежні випробування, в яких подія А має одну і ту ж ймовірність.

Нижче скористаємося поняттям складної події, розуміючи під ним поєднання декількох окремих подій, які називають простими

Хай проводиться n незалежних випробувань, в кожному з яких подія А може з’явитися або не з’явитися. Умовимося вважати, що ймовірність події А в кожному випробуванні одна і та же, а саме рівна р. Отже, ймовірність ненастання події А в кожному випробуванні також постійна і рівна q=1-p.

Поставимо перед собою задачу обчислити ймовірність того, що при n випробуваннях подія А здійсниться рівно k раз і, отже, не здійсниться n-k разів. Важливо підкреслити, що не потрібно, щоб подія А повторилася рівно k разів в певній послідовності. Наприклад, якщо йдеться про появу події А три рази в чотирьох випробуваннях, то можливі наступні складні події: ,,,. Записозначає, що в першому, другому і третьому випробуваннях подія А настала, а в четвертому випробуванні вона не з’явилася, тобто настала протилежна подія; відповідний сенс мають і інші записи.

Шукану ймовірність позначимо . Наприклад, символ Р5(3) означає ймовірність того, що в п’яти випробуваннях подія з’явиться рівно 3 рази і, отже, не настане 2 рази.

Поставлену задачу можна розв’язати за допомогою так званої формули Бернуллі.

Виведення формули Бернуллі.Ймовірність однієї складної події, що полягає в тому, що у n випробуваннях подія А настане k разів і не настане n-k разів, за теоремою множення ймовірностей незалежних подій дорівнює. Таких складних подій може бути стільки, скільки можна скласти сполучень з n елементів по k елементів, тобто. Оскільки ці складні події несумісні, то за теоремою додавання ймовірностей несумісних подій шукана ймовірність дорівнює сумі ймовірностей всіх можливих складних подій. Оскільки ж ймовірності всіх цих складних подій однакові, то шукана ймовірність (появи k разів події А в n випробуваннях) рівна ймовірності однієї складної події, помноженій на їх число:

або

.

Отриману формулу називають формулою Бернуллі.

4.2. Локальна теорема Лапласа

Вище була виведена формула Бернуллі, що дозволяє обчислити ймовірність того, що подія з’явиться в n випробуваннях рівно k разів. При виведенні ми мали на увазі, що ймовірність появи події в кожному випробуванні постійна. Легко бачити, що користуватися формулою Бернуллі при великих значеннях n достатньо важко, оскільки формула вимагає виконання дій над величезними числами. Наприклад, якщо n=50, k=30, р=0,1, то для знаходження ймовірності Р50(30) треба обчислити вираз Р50(30)=50!/(30!20!)*(0,1)30*(0,9)20, де 50!=30414093*1057, 30!=26525286*1025, 20!=24329020*1011. Правда, можна дещо спростити обчислення, користуючись спеціальними таблицями логарифмів факторіалів. Проте і цей шлях залишається громіздким і до того ж має істотний недолік: в таблицях наведені наближені значення логарифмів, тому в процесі обчислень нагромаджуються погрішності; в результаті остаточний результат може значно відрізнятися від дійсного.

Природно виникає питання, чи не можна обчислити ймовірність, що цікавить нас, не вдаючись до формули Бернуллі? Виявляється, можна. Локальна теорема Лапласа і дає асимптотичну формулу, яка дозволяє приблизно знайти ймовірність появи події рівно k разів в n випробуваннях, якщо число випробувань достатньо велике.

Відмітимо, що для часткового випадку, а саме для р=1/2, асимптотична формула була знайдена в 1730 р. Муавром; в 1783 р. Лаплас узагальнив формулу Муавра для довільного р, відмінного від 0 і 1. Тому теорему, про яку тут йде мова іноді називають теоремою Муавра-Лапласа.

Доведення локальної теореми Лапласа досить складне, тому ми наведемо лише формулювання теореми і приклади, що ілюструють її використання.

Локальна теорема Лапласа. Якщо ймовірність р появи події А в кожному випробуванні постійна і відмінна від нуля і одиниці, то ймовірність Pn(k) того, що подія А з’явиться в n випробуваннях рівно k разів, приблизно дорівнює (тим точніше, чим більше n) значенню функції

при .

Є таблиці, в яких наведені значення функції , що відповідають додатнім значенням аргументух. Для від’ємних значень аргументу користуються тими ж таблицями, оскільки функціяпарна, тобто.

Отже, ймовірність того, що подія А з’явиться в n незалежних випробуваннях рівно k разів, приблизно дорівнює

,

де .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]