
- •Министерство образования российской федерации
- •Содержание
- •Предисловие
- •Лабораторная работа №1 Физиология трудовых процессов
- •Общие сведения
- •Методика выполнения работы. Применяемые приборы и оборудование
- •Порядок выполнения работы
- •Санкт-Петербургская государственная академия сервиса и экономикИ Лабораторная работа №1 Физиология трудовых процессов
- •Сердечно-сосудистая и дыхательная системы
- •Оценка состояния здоровья и биологического возраста мужчин (для женщин требования на 10% ниже)
- •Вопросы для самопроверки
- •Лабораторная работа №2 Исследование метеорогических условий на рабочем месте
- •Общие сведения
- •Зависимость количества вырабатываемого организмом тепла от характера и условий деятельности
- •Методика проведения работы. Используемые приборы и оборудование
- •1. Температура
- •2. Относительная влажность
- •3. Подвижность воздуха
- •Гигрометр вит-2 Психрометрическая таблица Скорость аспирации от 0,5 до 1,0 м/с
- •4. Атмосферное давление
- •Порядок выполнения работы
- •Результаты исследования параметров метеоусловий на рабочем месте
- •Санкт-Петербургская государственная академия сервиса и экономики Лабораторная работа №2 Исследование метеорологических условий на рабочем месте
- •Задачи к лабораторной работе по микроклимату
- •Вопросы для самопроверки
- •Приложение 1
- •Допустимые нормы температуры, относительной влажности и скорости движения воздуха в обслуживаемой зоне жилых, общественных и административно-бытовых помещений
- •Приложение 2
- •Расчетные температуры, скорость и относительная влажность воздуха на постоянных и непостоянных рабочих местах производственных помещений
- •Приложение 3
- •Расчетные нормы температур и скорости движения воздуха при воздушном душировании
- •Приложение 4
- •Показания к применению систем центрального отопления
- •Коэффициент теплоотдачи печей
- •Коэффициент теплоотдачи теплоносителя в разных типах нагревательных приборов
- •Лабораторная работа №3 Исследование производственного освещения
- •Естественное освещение
- •Искусственное освещение
- •Методика проведения работы. Используемые приборы и оборудование
- •Порядок выполнения работы
- •Санкт-Петербургская государственная академия сервиса и экономикИ Лабораторная работа №3 Исследование производственного освещения
- •Вопросы для самопроверки
- •Приложение 1
- •Приложение 2 Рекомендуемые области применения систем освещения
- •Приложение 3
- •Приложение 4
- •Группы административных районов по ресурсам светового климата
- •Приложение 5
- •Приложение 6
- •Приложение 7
- •Рекомендуемые источники света для производственных помещений
- •Продолжение Прил. 7
- •Приложение 8
- •Рекомендуемые источники света для общего освещения жилых общественных зданий
- •Продолжение прил. 8
- •Приложение 9
- •Приложение 10 Основные термины
- •Приложение 11 Коэффициенты отражения света цветными поверхностями
- •Лабораторная работа №4 Защитное заземление и зануление электроустановок
- •Общие сведения
- •Предельные величины токов и напряжений
- •Предельные величины отпускающих токов и напряжений
- •Методика проведения работы. Используемые приборы и оборудование
- •Порядок выполнения работы
- •Результаты измерений величин напряжений прикосновения, поражающих токов и сопротивлений
- •Ситуационные задачи
- •Вопросы для самопроверки
- •Лабораторная работа №5 Защитное отключение в электрустановках напряжением до 1000 в
- •Общие сведения
- •Методика проведения работы. Используемые приборы и оборудование
- •Порядок выполнения работы
- •Результаты измерения величин поражающих токов и сопротивлений
- •Санкт-Петербургская государственная академия сервиса и экономики Лабораторная работа №5 Защитное отключение в электроустановках напряжением до 1000в
- •Ситуационные задачи
- •Вопросы для самопроверки
- •Лабораторная работа №6 Исследование электромагнитных излучений
- •Общие сведения
- •Воздействие эмп на организм человека и защита от них
- •Методика выполнения работы. Применяемые приборы и оборудование
- •Порядок выполнения работы
- •Санкт-Петербургская государственная академия сервиса и экономики Лабораторная работа №6 Исследование электромагнитных излучений
- •Предлагаемая таблица отчета по лабораторной работе
- •Классы условий труда при действии электромагнитных излучений
- •Критерии для установления балльных оценок элементов условий труда
- •Вопросы для самопроверки
- •Лабораторная работа №7 Ионизирующие излучения и их измерение
- •1. Общие сведения
- •2. Защита от ионизирующих излучений
- •Длины релаксации нейтронов в среде в зависимости от вида среды и энергии нейтрона ()
- •3. Порядок проведения работы. Применяемые приборы и материалы
- •Сводная ведомость полученных результатов при выполнении лабораторной работы
- •Санкт-Петербургская государственная академия сервиса и экономикИ Лабораторная работа №7 Ионизирующие излучения и их измерение
- •Вопросы для самопроверки
- •Приложение 1 Степени облучения человека и санитарно-гигиенические нормативы
- •Приложение 2
- •Среднегеометрические и граничные частоты октавных полос
- •Методика проведения работы. Используемые приборы и оборудование
- •Порядок выполнения работы
- •Предлагаемая таблица отчета по лабораторной работе
- •Санкт-Петербургская государственная академия сервиса и экономики Лабораторная работа №8 Измерение шума на рабочем месте
- •Вопросы для самопроверки
- •Приложение 1
- •Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах для трудовой деятельности разных категорий тяжести и напряженности, дБа
- •Приложение 2
- •Предельно допустимые уровни звукового давления, уровни звука и эквивалентные уровни звука для основных, наиболее типичных видов трудовой деятельности и рабочих мест
- •Лабораторная работа №9 Измерение вибрации на рабочем месте
- •Общие сведения
- •Классификация вибросиловых характеристик ручных машин
- •Показатели заболеваемости вибрационной болезнью в основных виброопасных профессиях
- •Нормативные основы аттестации рабочих мест по вибрационному фактору
- •Соотношение между логарифмическими уровнями виброскорости, дБ, и ее значениями, м/с
- •Соотношение между логарифмическими уровнями виброускорения, дБ, и его значениями, м/с2
- •Оценка фактических условий труда на рабочем месте по степени вредности
- •Методы борьбы с вибрацией
- •Методика проведения работы. Применяемые приборы и оборудование
- •Порядок выполнения работы. Измерение виброускорения
- •Измерение логарифмических уровней виброускорения или виброскорости в децибелах (дБ)
- •Санкт-Петербургская государственная академия сервиса и экономики Лабораторная работа №9 Измерение вибрации на рабочем месте
- •Предлагаемая таблица отчета по лабораторной работе
- •Вопросы для самопроверки
- •Приложение 1
- •Предельно допустимые значения производственной локальной вибрации по осям Хл, Ул,Zл
- •Приложение 2
- •Предельно допустимые значения виброускорения для рабочих мест категории 1 – транспортной
- •Приложение 3
- •Предельно допустимые значения виброскорости для рабочих мест категории 1 – транспортной
- •Приложение 4
- •Предельно допустимые значения вибрации рабочих мест по осям х0, у0,z0 категории 2 – транспортно-технологической
- •Приложение 5
- •Предельно допустимые значения вибрации рабочих мест по осям х0, у0,z0 категории 3 – технологической типа «а»
- •Приложение 6
- •Предельно допустимые значения вибрации рабочих мест по осям х0, у0,z0 категории 3 – технологической типа «б»
- •Приложение 7
- •Предельно допустимые значения вибрации рабочих мест по осям х0, у0,z0 категории 3 – технологической типа «в»
- •Лабораторная работа №10 Исследование геопатогенных зон Земли (гпз)
- •Общие сведения
- •Методика выполнения работы. Применяемые приборы и оборудование
- •Санкт-Петербургская государственная академия сервиса и экономики Лабораторная работа №10 Исследование геопатогенных зон Земли (гпз)
- •Упражнения для работы с рамками и маятником
- •Упражнения с использованием 100-процентной шкалы.
- •Литература:
- •Вопросы для самопроверки:
- •Лабораторная работа №11 Анализ производственного травматизма (деловая игра)
- •1. Общие сведения
- •Средние величины показателей
- •2. Условия проведения работы
- •3. Порядок выполнения работы
- •Сведения о количестве несчастных случаев и числе дней нетрудоспособности за 2000 год
- •Санкт-Петербургская государственная академия сервиса и экономики Лабораторная работа №11 Анализ производственного травматизма (деловая игра)
- •Вопросы для самопроверки
- •Приложение 1
- •О несчастном случае на производстве
- •Приложение 2 Пояснение по заполнению акта н-1
- •Классификаторы
- •Приложение 3
- •Продолжение прил. 3 Число пострадавших при несчастных случаях на производстве
- •Приложение 4
- •О несчастном случае на производстве
- •Приложение 5
- •Протокол опроса пострадавшего при несчастном случае (очевидца несчастного случая, должностного лица)
- •Приложение 6
- •Протокол осмотра места несчастного случая, происшедшего
- •В ходе осмотра установлено:
- •1) Обстановка и состояние места происшествия несчастного случая на момент осмотра ________________________________________________
- •Приложение 7 Критерии оценки степени опьянения
- •Лабораторная работа №12 Оценка уровня условий труда на рабочем месте
- •Общие сведения
- •Основные термины и определения
- •3. Исходные данные
- •4. Методика выполнения задания
- •5. Характеристика факторов окружающей среды
- •1. Санитарно-гигиенические элементы условий труда
- •2. Психофизиологические элементы условий труда
- •6. Составление Карты аттестации рабочего места по условиям труда Порядок заполнения карты аттестации рабочих(его) мест(а) по условиям труда
- •Карта аттестации
- •Карта № ____________
- •3. Оценка условий труда на рабочем месте (рм) по степени вредности и опасности
- •Санкт-Петербургская государственная академия сервиса и экономики Лабораторная работа №12 Оценка уровня условий труда на рабочем месте
- •Вопросы для самопроверки
- •Приложение 1
- •Приложение 2 Классификация условий труда по травмобезопасности
- •Приложение 3
- •Отчет о состоянии условий труда, льготах и компенсациях за работу в неблагоприятных условиях труда за 200 __ год
- •Продолжение прил. 3
- •II. Льготы и компенсации за работу в неблагоприятных условиях труда
- •Приложение 4 Критерии для установления балльных оценок элементов условий труда
- •Приложение 5 Оценка тяжести труда
- •Приложение 6 Последовательность предоставления льгот и компенсаций в зависимости от оценки условий труда
- •Приложение 7 Интерпретация количественных оценок условий труда
- •Лабораторная работа №13 Исследование молниезащиты зданий и сооружений
- •1. Общие сведения
- •2. Расчет зоны защиты молниеотводов
- •2.1. Одиночный стержневой молниеотвод
- •2.2. Двойной стержневой молниеотвод.
- •2.3. Одиночный тросовый молниеотвод
- •3. Порядок проведения работы
- •Санкт-Петербургская государственная академия сервиса и экономикИ Лабораторная работа №13 Исследование молниезащиты зданий и сооружений
- •Вопросы для самопроверки
- •Приложение 1 Данные для определения типа и категории молниезащиты
- •Продолжение прил. 1
- •Приложение 2 Методика расчета молниезащиты на эвм Уравнения для программирования и программа расчета молниезашиты*
- •Продолжение прил. 2
- •Продолжение прил. 2
- •Продолжение прил. 2 Программа расчета молниезащиты
- •Приложение 3 Задачи для расчета молниезащиты
- •Практическое занятие №14 Пожарная безопасность
- •1. Цель практического занятия:
- •2. Общие положения
- •Источники воспламенения
- •Способы и приемы прекращения горения
- •3. Виды пожаров
- •4. Классификация материалов и строительных конструкций
- •5. Требования безопасности производственная санитария
- •6. Порядок проведения занятия
- •7. Назначение и классификация огнетушителей
- •8. Устройство и область применения огнетушителей
- •9. Средства защиты при ликвидации пожара
- •Приложение 1 Требования к инструкции о мерах пожарной безопасности
- •Приложение 2
- •Инструкция № по пожарной безопасности в лабораториях академии
- •Продолжение Прил. 2
- •Продолжение Прил. 2
- •Практическая работа № 15 Оценка радиационной обстановки в зонах радиоактивного загрязнения местности методом прогнозирования
- •1. Исходные данные для расчетов
- •2. Методика оценки радиационной обстановки на объекте
- •Приложение 1 Пример расчета радиационной опасности
- •Продолжение прил. 1
- •Продолжение прил. 1
- •Приложение 2 Средние значения коэффициента ослабления излучения Косл
- •Приложение 3 Возможные последствия радиоактивного облучения незащищенного населения в зонах радиоактивного заражения местности
- •Практическая работа № 16 Оценка химической обстановки на объекте методом прогнозирования
- •1. Исходные данные для оценки химической обстановки
- •2. Методика оценки химической обстановки
- •График для определения степени вертикальной устойчивости воздуха по данным прогноза погоды
- •Возможные потери рабочих, служащих и населения от хв в очаге поражения, %
- •Поправочный коэффициент на скорость ветра
- •Приложение 1 Пример оценки химической обстаовки
- •Продолжение прил. 1
- •Величины поправочных коэффициентов при скоростях ветра, отличных от 1 м/с
- •Глубина распространения облака, км (емкость не обвалована, скорость ветра 1 м/с).
- •Продолжение прил. 1
- •Время испарения хв, ч, при скорости движения воздуха 1 м/с
- •Продолжение прил. 1 Действия службы го сПбГасэ при угрозе химического заражения (газ хлор)
- •Приложение 2 Глубина распространения облака зараженного воздуха, км. (емкость не обвалована, скорость ветра 1 м/с)
- •Приложение 3 Средняя скорость переноса облака, зараженного хв, воздушным потоком, м/с
- •Практическая работа №17 Комплексная оценка социально-экономической эффективности мероприятий по безопасности жизнедеятельности
- •1. Общие сведения
- •2. Экономические расчеты по бжд
- •Решить задачи
- •Литература
- •Сакулин Владимир Порфирьевич Эмиров Игорь Халилович Безопасность жизнедеятельности
- •193171 Г. Санкт-Петербург, ул. Седова, 55/1
1. Общие сведения
Термины и определения
Ионизация– физическое превращение нейтральных атомов и молекул в положительно или отрицательно заряженные ионы.
Ион– электрически заряженная частица, ионы образуются при потере или приобретении электронов атомами вещества.
В стабильном атомном ядре протоны и нейтроны удерживаются ядерными силами притяжения.
Протон– стабильная элементарная частица с массой в 1836 масс электрона. Протоны с нейтронами образуют все атомные ядра.
Электрон– стабильная отрицательно заряженная частица массой 9·10-28грамма.
Лептоны– (греч. – легкий) элементарные частицы не участвуют в сильном взаимодействии. Масса легких лептонов в 109меньше массы электрона.
Нейтрон– нейтральная элементарная частица с массой, превышающей массу протона на 2,5 электронных масс. В свободном состоянии нейтрон не стабилен и имеет время жизни около 16 минут. Вместе с протоном нейтрон образует атомные ядра и там они стабильны.
Радиоактивность– самопроизвольное превращение неустойчивых атомных ядер в ядра других элементов, сопровождающееся испусканием частиц илиg-кванта.
Известны четыре типа радиоактивности: 1. протонная; 2. a-распад; 3.b-распад; 4. спонтанное деление атомных ядер.
Впервые радиоактивность обнаружена А. Беккерелем в 1896 году.
Радиоактивные элементы– химические элементы, все изотопы которых радиоактивны (например, технеций, прометий, полоний и следующие за ними в периодической системе Д.И. Менделеева).
Изотопы– разновидности данного химического элемента, различающиеся по массе ядра.
Радионуклиды– те изотопы элементов, которые испускают радиоактивное излучение, способное выбивать электроны из атомов и присоединять их к другим атомам с образованием пар положительных и отрицательных ионов. Такое излучение называется ионизирующим. При испытании атомного оружия, аварии на АЭС выпадают осадки, содержащие радионуклиды.
Гамма излучение– коротковолновое электромагнитное излучение с длиной волны менее 10-8см, возникающее при распаде радиоактивных ядер и элементарных части, при взаимодействии быстрых заряженных частиц с веществом.
Альфа-распад– самопроизвольный распад атомных ядер наa-частицы. Альфа радиоактивны почти исключительно ядра тяжелых металлов с порядковым номером более 82.
Бета-частицы– вылетающие из атомных ядер со всевозможными начальными энергиями частицы, обладающие различными пробегами в веществе.
Благодаря небольшой проникающей способности aиbизлучения не представляют опасности длявнешнего облучения.
Плотная одежда может поглощать значительную часть b-частиц и совсем не пропускатьa-частицы. Однако, при попадании внутрь организма человека с пищей, водой и воздухом эти частицы могут причинить серьезный вред здоровью.
Гамма-излучения(g-кванты) инейтроныне обладают электрическим зарядом. Они свободно проходят через атомы. Пути их пробега – сотни сантиметров (иногда метров). Гамма-излучения, взаимодействуя с веществами, производят его ионизацию и возбуждение атомов среды.
Единицы измерения радиации
Активность (А)– мера радиоактивности какого-либо количества радионуклида, находящегося в данном энергетическом состоянии в данный момент времени:
А=dN/dt, Бк (1)
где dN– ожидаемое число спонтанных ядерных превращений за времяdt.
Единицей измерения в системе СИ является Беккерель (Бк), равный одному распаду в секунду.
Доза поглощения (D)– величина энергии ионизирующего излучения, переданная веществу.
(Гр) (2)
где
- средняя энергия, переданная ионизирующим
излучением веществу, находящемуся в
элементарном объеме;
- масса вещества в этом объеме. В системе
СИ она измеряется в Дж/кг и имеет название
– Грей (Гр).
Мощностью поглощенной дозыявляется доза излучения за 1 с (Гр/с).
Доза эквивалентная (HTR)– поглощенная доза в органе или ткани, умноженная на соответствующий взвешенный коэффициент для данного вида излучения,WR:
HTR=WR·DTR, Зв, (3)
где DTR– средняя поглощенная доза в органе или ткани Т, аWR - взвешенный коэффициент для излученияR.
Единицей эквивалентной дозы является Зиверт (Зв). 1Зв=1Гр/ WR.
При воздействии различных видов излучения с различными взвешенными коэффициентами эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения:
(4)
Мощность эквивалентной дозы (Н)– доза излучения за единицу времени (секунду, минуту, час).
Единицей измерения в системе СИ является Зиверт в секунду (Зв/с).
Доза эффективная (Е) – величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешенные коэффициенты:
(5)
где
- эквивалентная доза в органах или тканях
Т;
- взвешивающий коэффициент для органов
или тканей Т.
Единицей эффективности дозы является Зиверт (Зв).
Соотношения между единицами СИ и внесистемными представлены в табл. 1.
Биологическое воздействие ионизирующих излучений
Ионизирующие излучения подчиняются закону радиоактивного распада. Распад большого количества ядер любого радиоактивного изотопа подчиняется закону, который выражается формулой:
(6)
где N– количество ядер, не испытавших распада;
N0– начальное количество радиоактивных ядер (приt=0);
T– постоянная величина, зависящая от типа радиоактивного изотопа и определяющая период полураспада.
Через промежуток времени t=Tисходное количество радиоактивных ядер убывает в 2 раза, поскольку в формуле цифра 2 становится в –1 степени.
На рисунке представлен график радиоактивного распада изотопа.
Таблица 1
Величина и ее символ |
Название и обозначение единиц |
Связь между единицами | |
Единица СИ |
Внесистемная единица | ||
Активность А |
Беккерель (Бк), равный одному распаду в секунду (расп./с) |
Кюри (Ки) |
1 Ки=3,700·1010 расп./с=3,700·1010 Бк; 1 Бк=1 расп./с; 1 Бк=2,703·10-11 Ки |
Плотность потока I и JE энергии частиц |
Ватт на квадратный метр (Вт/м2), равный одному джоулю на квадратный метр в секунду [Дж/(м2·с)] |
Эрг на квадратный сантиметр в секунду [эрг/(см2·с)] или мегаэлектронвольт на квадратный сантиметр в секунду [МэВ/(см2·с)] |
1 эрг/(см2·с)=1·10-3 Дж/ (м2·с)= =1·10-3 Вт/м2; 1 Вт/м2=1 Дж/ (м2·с)=1·10-3 эрг/(см2·с); 1 МэВ/(см2·с)=1,602·10-9 Дж/(м2·с)= =1,602·10-9 Вт/м2; 1 Вт/м2=1 Дж/ (м2·с)=6,24·108 МэВ/(см2·с) |
Поглощенная доза D |
Грэй (Гр), равный одному джоулю на килограмм (Дж/кг) |
Рад (рад) |
1 рад=100 эрг/г=1·10-2 Дж/кг=1·10-2 Гр; 1 Гр=1 Дж/кг; 1 Гр= 1 Дж/кг=104 эрг/г=100 рад |
Мощность поглощенной дозы D |
Грэй в секунду (Гр/с), равный одному джоулю на килограмм в секунду [Дж/(кг·с)] |
Рад в секунду (рад/с) |
1 рад/с=1·10-2 Дж/(кг·с)= 1·10-2 Гр/с; 1 Гр/с=1 Дж/(кг·с)= 1·10-2 рад/с |
Эквивалентная доза Н |
Зиверт (Зв), равный одному грэю на взвешивающий коэффициент для вида излучения – WR [1Гр/WR=1(Дж/кг)/WR] |
Бэр (бэр) |
|
Мощность эквивалентной дозы Н |
Зиверт в секунду (Зв/с) |
Бэр в секунду (бэр/с) |
1бэр/с=1·10-2Зв/с 1 Зв/с=100 бэр/с |
Экспозиционная доза* X |
Кулон на килограмм (Кл/кг) |
Рентген (Р) |
1 Р=2,58·10-4 Кл/кг (точно); 1 Кл/кг=3,88·103 Р (приближенно) |
Мощность экспозиционной дозы X |
Кулон на килограмм в секунду [Кл/(кг·c)] |
Рентген в секунду (Р/с) |
1 Р/с=2,58 10-4 Кл/(кг·с) (точно); 1 Кл/(кг·с)=3,88·103 Р/с (приближенно) |
Керма** К |
Грэй (Гр), равный одному джоулю на килограмм (Дж/кг) |
Рад (рад) |
1 рад=100 эрг/г=1·10-2 Дж/кг=1·10-2 Гр; 1 Гр=1 Дж/кг; 1 Гр=1 Дж/кг=104 эрг/г=100 рад |
Мощность кермы К |
Грэй в секунду (Гр/с), равный одному джоулю на килограмм в секунду [Дж/(кг·с)] |
Рад в секунду (рад/с) |
1 рад/с=1·10-2 Дж/(кг·с)= 1·10-2 Гр/с; 1 Гр/с=1 Дж/(кг·с)= 1·10-2 рад/с |
Примечание:
* Используется для гамма-излучения с энергией до 3 МэВ в воздухе. 1Р=0,87 рад=0,87·10-2 Гр поглощенной в воздухе дозы.
** Для гамма-излучения с энергией до 10 МэВ керма практически не отличается от поглощенной дозы.
Рис. 1. График радиоактивности распада.
Прямое действие радиации приводит к диссоциации – распаду частиц (молекул, радикала, иона) на несколько более простых частиц. Свободные радикалы водорода и гидроксильной группы (ОН) обладают высокой активностью, вступают в химические реакции с молекулами белка, ферментов и других элементов биоткани, что приводит к нарушению биохимических процессов в организме. Например, при диссоциации в растворе щелочи имеем:
NaOH
Na++OH
®
т.е. ион натрия Na+и гидроксильную группуOH.
В результате нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму. Это приводит к нарушению деятельности отдельных функций и систем организма.
Индуцированные свободными радикалами химические реакции развиваются с большим выходом, вовлекая в процесс сотни и тысячи молекул, не задействованных излучением. Такова специфика воздействия ионизирующего излучения на биологические объекты. Эти цепные реакции могут развиваться в течение от нескольких секунд до нескольких лет.
Ионизирующая радиация, воздействуя на организм человека, может вызвать два вида аффектов (крайнее напряжение), относимые к болезням: 1) детерминированныепороговые аффекты (лучевая болезнь, лучевой ожог, лучевая катаракта, бесплодие, аномалии в развитии плода и др.); 2)стохастические(вероятностные) беспороговые аффекты (злокачественные опухоли, лейкозы, наследственные болезни).
Острые поражения развиваются при однократном равномерном g-облучении всего тела и поглощенной дозе выше 0,25 Гр. При дозе0,25-0,5 Грмогут наблюдаться временные изменения в крови, которые быстро нормализуются.
В интервале дозы 0,5-1,5 Грвозникаетчувство усталости,менее чем у10%облученных, может наблюдаться рвота, умеренные изменения в крови.
При дозе 1,5-2,0 Грнаблюдается легкая форма острой лучевой болезни, которая проявляется продолжительнойлимфопенией, в 30-50 % случаев – рвота в первые сутки после облучения.
Смертельныеисходы не регистрируются.
Лучевая болезньсредней тяжестивозникает при дозе2,5-4,0 Гр. При этом в первые сутки после облучения наблюдается тошнота, рвота, резко снижается в крови количество лейкоцитов, появляются подкожные кровоизлияния, в20%- возможен смертельный исход. Смерть может наступить через2-6 недельпосле облучения.
При дозе 4,0-6,0 Гр– развиваетсятяжелая форма лучевой болезни, приводящая к50%смертельных случаев в течениепервого месяца.
При дозах превышающих > 6,0 Гр, развивается крайне тяжелая форма лучевой болезни, которая приводит почти в100%случаев ксмертельному исходу, вследствиекровоизлиянияилиинфекционных заболеваний.
Все перечисленные данные о лучевых болезнях рассмотрены при полном отсутствии своевременного лечения!
В настоящее время имеются противолучевые средства, позволяющие, при комплексномлечении исключитьлетальный исходпри дозах =10 Гр!
Хроническая лучевая болезньможет развиваться при дозах значительно ниже указанных выше, если человек длительно и непрерывно подвергается облучению.
Характерными признаками хроническойлучевой болезни являются: 1) изменения в крови; 2) ряд симптомов со стороны нервной системы; 3) локальные поражения кожи; 4) поражения хрусталика глаза; 5) пневмосклероз; 6) снижение иммунореактивности организма.
Степень воздействия радиационных излучений зависит от: 1) является ли облучение внешним; 2) является ли излучениевнутренним(при попадании радиоактивного изотопа внутрь организма).
Внутреннееоблучение происходит при дыхании, заглатывании радиоизотопов, проникновения их в организм контактным путем через поверхность кожи.
Следует помнить, что кальций, радий, стронцийи некоторые другие радиоактивные элементы накапливаются в костях, создавая там их высокую локальную дозу.Изотопы йодавызывают повреждение щитовидной железы (недостаток йода в пище).Редкоземельныеэлементы вызываютопухоли печени. Привнутреннемоблучении наиболее опасны альфа-излучения изотопыполонияиплутония.
Ионизирующее излучение, воздействуя на организм человек, вызывают следующие отдаленные последствия: 1) лейкозы; 2) злокачественные новообразования; 3) раннее старение.