Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛП_ОХЭ_НХ.doc
Скачиваний:
96
Добавлен:
05.06.2015
Размер:
1.51 Mб
Скачать

6. Комплексные соединения

Комплексные соединения - соединения второго порядка. Они, как правило, образуются при взаимодействии соединений первого порядка (кислот, оснований, солей) между собой. Например:

Zn(OH)2 + 2NaOH ⇄ Na2[Zn(OH)4]

Fе(CN)3 + 3KCN ⇄ K3[Fe(CN)6].

С точки зрения строения молекул, комплексные соединения – это вещества, молекулы которых состоят из центрального атома или иона-комплексообразователя, находящегося в неионогенной связи с лигандами или аддендами - атомами, нейтральными молекулами или ионами. Количество координированных лигандов характеризуется координационным числом комплексообразователя. Комплексообразователь вместе с лигандами образует внутреннюю сферу комплексного соединения (комплексный ион, молекула). Комплексный ион находится в ионогенной (ионной) связи с ионами внешней среды.

Например, в соединении K3[Fe(CN)6] ион Fe3+ выполняет функцию комплексообразователя, координационное число которого равно шести, ионы CN- лиганды, ион [Fe(CN)6]3- - комплексный ион или внутренняя сфера, ионы К+ - внешняя сфера.

В качестве комплексообразователей чаще всего выступают ионы или атомы d- и р-элементов (Fe2+, Fe3+, Ni2+, Cd2+, Zn2+, Cu2+, Si+4, Ge4+, Al3+ и т.д.)

Из ионов s - элементов сравнительно прочные комплексы образует Ве2+.

Координационное число комплексообразователя зависит от природы лигандов и комплексообразователя, их размеров, заряда, условий протекания реакции (температуры, концентрации). Наиболее характерные координационные числа: 2 – для Ag+, Cu+; 4 - для Cu2+, Zn2+, Cd2+, Hg2+, Co2+, Ni2+, Au3+; 6 - для Fe2+ и Fe3+, Si+4, Ge4+, Cd2+; 8 - для W6+ и т.д.

Лигандами в комплексных соединениях часто бывают: отрицательно заряженные ионы кислотных остатков (CN-, CNS-, NO2-, Сl-, Br-, I-, СО32-, S2-, S2О32-), они образуют класс ацидокомплексов; гидроксогруппы ОН-, образуют класс гидроксокомплексов; молекулы воды, образуют класс аквакомплексов; молекулы аммиака NH3, образуют класс аммиакатов и др.

При вычислении заряда внутренней сферы руководствуются правилом, согласно которому заряд комплексного иона равен алгебраической сумме зарядов его составных частей, т.е. комплексообразователя и лигандов. По характеру заряда различают катионные, анионные, нейтральные комплексы.

Катионные комплексы чаще всего образуются в результате координации вокруг положительных ионов нейтральных молекул, например: [Zn(NH3)4]Cl2 (хлорид тетрамминцинка), [Аl(Н2О)6]С13 (хлорид гексаакваалюминия).

В анионных комплексах в роли комплексообразователя выступают положительные ионы, а лигандами являются анионы, например: К2[BeF4] (тетрафторобериллат-II- калия), K2[HgI4] (тетрайодомеркурат-II- калия), Са3[Аl(ОН)6]2 (гексагидроксоалюминат-III- кальция).

Нейтральные комплексы образуются при координации вокруг нейтрального атома комплексообразователя нейтральных лигандов, а также при одновременной координации вокруг положительного иона-комплексообразователя отрицательно заряженных и нейтральных лигандов. Нейтральные комплексы являются комлексными соединениями без внешней сферы, например: [Co(NH3)3C13] (трихлоротриамминкобальт), [Pt(NH3)2Cl4] (тетрахлородиамминплатина). Встречаются соединения, образованные и комплексным анионом и комплексным катионом. Например, [Pt(NH3)4][PtCl4] (тетрахлороплатинат-II- тетраамминплатины (II)).

Устойчивость комплексных соединений характеризуется константой диссоциации комплексных ионов. Все комплексные соединения, за исключением соединений без внешней сферы, диссоциируют ступенчато, например:

[Ag(NH3)2]Сl = [Ag(NH3)2]+ + Cl- I ступень;

[Ag(NH3)2]+ ⇄ Ag+ + 2NH3 II ступень.

Причем диссоциация протекает по первой ступени нацело, а по второй ступени лишь в незначительной степени.

Диссоциация достаточно устойчивых комплексных ионов, как и диссоциация слабых электролитов, может быть количественно охарактеризована константами равновесий, которые называются константами нестойкости. Очевидно, чем большей устойчивостью обладает комплексный ион, тем меньше его константа нестойкости, и наоборот. Исходя из констант нестойкости ионов [Ag(NH3)2]+ и [Cu(NH3)4]2+, имеющих значения

можно сделать вывод, что комплекс [Ag(NH3)2]+ менее устойчив, чем комплекс [Cu(NH3)4]2+.

Сопоставление констант нестойкости различных комплексов позволяет в ряде случаев определить направление смещения равновесия.

Так, в реакции

[Ag(NH3)2]+ + 2CN- ⇄ [Ag(CN)2]- + 2NH3

равновесие смещается в сторону более устойчивого цианидного комплекса (Kнест. = 1·10-21 для [Ag(CN)2]- по сравнению с Кнест. = 9·10-8 для [Ag(NH3)2]+). По величине константы нестойкости можно оценить вероятность выпадения в осадок вещества, содержащего один из элементов внутренней сферы. Чем больше константа нестойкости и меньше произведение растворимости, тем больше вероятность образования осадка, и наоборот.

Известны также соединения, которые ведут себя в растворе подобно смеси двух солей, т.е. диссоциируют нацело, например: K2[CuCl4], K[MgCl3]·6Н2О, (NH4)2[Fе(SO4)2]·6Н20. Такие соли получили название двойных, а формулы их могут быть представлены в виде

CuCl2·2KCl, КСl·MgCl2·6Н2О, (NH4)2SO4·FeSO4·6Н2O.

Однако методом рентгеноструктурного анализа установлено наличие в их твердых структурах сочетаний [CuCl4]2-, ,[MgCl3]-; [Fe(SO4)2]2-. Очевидно, они представляют собой комплексные соединения с весьма непрочной внутренней сферой.

Процессы комплексообразования и комплексные соединения широко применяются в технологии микроэлектроники при:

• травлении тонких металлических пленок, например:

2Au + 3Br2 + 2KBr = 2K[AuBr4]

2Ag + Н2О2 + 4NH4OH = 2[Ag(NH)3)2]OH + 4Н2О;

• травлении кремния и германия, например:

3Si + 18HF + 4НNО3 = 3H2[SiF6] + 4NO+ 8Н2О;

• получении золотых покрытий электрохимическим методом из растворов цианистых комплексных соединений золота K[Au(CN)2] и др.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]