более высокой плотности. Они получаются методами порошковой металлургии и их прочностные свойства сильно зависят от размеров частиц исходных порошков. Порошки UО2 должны иметь размер частиц от 75 до 150 мкм, а алюминия – менее 60 мкм. При использовании порошка диоксида урана с мелкими частицами (~l мкм) при прокатке происходит растрескивание изделий, в то время как применение крупных частиц позволяет проводить объемные обжатия без дефектов до 30 %.
Влияние концентрации UO2 на механические свойства дисперсии UO2-Al показано на рис. 24.287. С увеличением концентрации UО2 несколько возрастает предел текучести, но сильно снижаются пластичность и предел прочности, причем пластичность падает практически до нуля при содержании UO2 свыше 40 %.
При выгорании топлива пластичность композиции UO2-Al быстро снижается в результате повреждения матрицы продуктами деления. На рис. 24.288 видно, что сопротивление разрыву возрастает, причем оно уменьшается при повышении содержания делящейся фазы в композиции. Также видно, что композиции UO2-Al менее прочны, чем композиции U-Al. Увеличение прочности твэла с сердечником из композиции UO2-Al пропорционально повышению твердости материала оболочки (рис. 24.289).
|
Рис. 24.288. Экспериментальная |
Рис. 24.287. Механические свойства |
зависимость изменения пластичности |
дисперсной композиции 18,7 мас.% |
композиции UO2–Al |
UО2-Al с алюминиевой оболочкой |
|
от облучения |
Рис. 24.289. Экспериментальная зависимость предела прочности пластин от твердости оболочки для пластин с алюминиевой оболочкой и различными композициями сердечника
При высоких температурах (>500 °С) UO2 реагирует с алюминием с образованием интерметаллидов. В условиях облучения взаимодействие может происходить и при более низких температурах. Так, при 600 °С UAl4 образуется за 30 ч, при 500° – за 180 ч (на 50– 70 %), а при 300 °С – за 750 ч. Очевидно, что чем продолжительнее облучение, тем больше степень взаимодействия.
На рис. 24.290 схематически показана последовательность образования продуктов реакции в процессе облучения композиции UO2- Al в виде таблеток диаметром 40 мм. Температура, определенная расчетами, в центре таблеток составляла 300 °С и снижалась к периферии.
Рис. 24.290. Схематическое изображение последовательности образования слоев
втаблетках UO2-Al в процессе выгорания топлива. Максимальная температура
вцентре таблеток составляет 300 °С
472
Как видно на рис. 24.290, таблетки в результате взаимодействия UO2 с алюминием приобрели сложную структуру, состоящую из нескольких концентрических слоев, имеющих различный фазовый состав. Наиболее полно он изображен на крайнем правом рисунке. Внешний слой состоит из UO2 и UAl3 и очень пластичен. Следующий слой является более хрупким и содержит главным образом UAl3. Затем следует слой из UAl3, отличающийся металлическим блеском, за ним располагается слой UAl3+UAl4. Центральная часть таблетки состоит целиком из UAl4. Увеличение объема дисперсной композиции в результате взаимодействия ее компонентов доходило до 10 %. Время облучения таблеток достигало 10 мес., а максимальное выгорание составляло 22 % всех атомов урана.
Типичные характеристики реакторов, использующих дисперсное топливо UО2-Al, приведены в табл. 24.44.
Дисперсная композиция U3О8-Al. Композиция U3O8-Al нашла практическое применение в ряде реакторов с высокой энергонапряженностью активной зоны, вследствие того, что этот оксид более стабилен в контакте с алюминием, чем UO2, однако плотность U3O8 ниже плотности диоксида урана.
При температурах выше 600 °С U3O8 реагирует с алюминием по реакциям:
3U3O8 + 4Al→9UO2 + 2Al2O3, 3UO2 + 16Al→3UAl4 + 2Al2O3.
При нагреве до температуры плавления алюминия и выше наряду с UО2 образуются также другие интерметаллические соединения:
3U3O8 + 34Al→9UAl2 + 8Al2O3, 3U3O8 + 43Al→9UAl3 + 8Al2O3, 3U3O8 + 52Al→9UAl4 + 8Al2O3.
Реакция алюминия с U3O8 протекает с незначительным изменением объема (рис. 24.291), что имеет важное значения для сохранения стабильности твэлов в случае их локального перегрева или случайного подъема температуры.
При облучении пластинчатых твэлов с композицией U3О8-Al при расчетной температуре в центре 80 °С до выгораний 16,2–
57,3 % они заметно уменьшали свои размеры (на ~3 % по толщине и ~0,1 % по ширине). Это явление наблюдалось на начальной стадии выгорания (менее 16,2 %). При более глубоких выгораниях дальнейшее уменьшение размеров твэлов практически отсутствовало.
Рис. 24.291. Увеличение объема твэлов пластинчатого типа из смесей:
1 – Al – 52,3 мас.%UО2; 2 – Al – 55,7 мас.% U3О8
Под облучением частицы U3O8 спекаются и начинают взаимодействовать с алюминием уже при низких выгораниях. В первую очередь поглощаются мелкие растянутые частицы U3O8 . Вероятно, U3O8 сначала превращается в UO2, а затем взаимодействует с алюминием, образуя интерметаллические соединения. Дальнейшее облучение приводит к образованию под воздействием газообразных продуктов деления пор, размеры которых постепенно возрастают. Проведенные исследования показали, что объемное содержание топливной фазы в композиции U3О8-Al не должно существенно превышать 40 % вследствие появления заметных объемных изменений из-за ее взаимодействия при облучении с алюминием.
Некоторые характеристики реакторов и используемых в них дисперсных твэлов с композицией U3О8-Al приведены в табл. 24.45.
Дисперсное ядерное топливо с матрицей из магния. Магний и уран не растворяются друг в друге ни в твердом, ни в жидком состояниях (рис. 24.292). Поэтому дисперсные системы магний– уран и магний–сплавы урана невозможно получить методами плавки и литья. Обычно их приготовляют методами порошковой металлургии при температурах ни-
же 650 °С, так как в системе U- Mg при более высоких температурах магний плавится.Таблетки изготовляют холодным прессованием и последующим спеканием при температурах ниже 625 °С или горячим прессованием. Стержни можно получать выдавливанием смесей порошков при температурах 550–600 ºС.
Другими важными свойствами магния являются высокая радиационная стойкость (примерно такая, как у алюминия) и более низкое, чем у алюминия, сечение
захвата тепловых нейтронов1. К Рис. 24.292. Система уран–магний недостаткам магния как материа-
ла матрицы следует отнести его низкую прочность, особенно при повышенных температурах
Для обеспечения радиационной стойкости дисперсных композиций с матрицей из магния важную роль играет радиационная стойкость частиц топлива и прочностные характеристики оболочки твэла. Так, при облучении композиций уран-магний в оболочке из алюминия увеличение объема достигало 4,41 и 10,2 % при выгораниях 1000 и 3000 МВт·сут./т U соответственно вследствие низкой радиационной стойкости урана, а также недостаточной прочности оболочки и матрицы. Поэтому в дисперсных композициях с маг-
1 Физическое материаловедение. Т. 6. Ч. 1. – М.: МИФИ, 2008. П. 23.2.1.
Рис. 24.293. Экспериментальная зависимость изменения диаметра твэла от степени выгорания 235U
ниевой матрицей в качестве топлива обычно используют радиационно стойкие γ-сплавы урана (например, U – 9 % Mo) или диоксид урана, а для оболочек твэлов – прочные сплавы циркония или кор- розионно-стойкую сталь, которые способны сдерживать распухание. Для повышения прочности матрицы иногда вместо чистого магния берут какой-либо его прочный сплав (например, сплав с добавкой кремния).
На рис. 24.293 приведены результаты изменения диаметра трубчатого твэла Обнинской АЭС с дисперсной композицией (U- Mо)-Мg и оболочкой из коррози- онно-стойкой стали в зависимости от степени выгорания. Максимальная температура на внешней оболочке составляла 360–370 °C, а на внутренней – 330 °С.
Из рисунка видно, что изменение диаметра даже при глубоких выгораниях является незначительным и стремится к постоянному
значению.
Подобные твэлы успешно эксплуатируются на БАЭС с проектным выгоранием 11,8 МВт·сут./т при обогащении урана изотопом 235U , равным 5 %. Опыт их эксплуатации показывает возможность достижения более глубоких выгораний, превышающих проектное на 60–70 %.
Металлографическое исследование отработанных твэлов показало плотное прилегание магниевой матрицы к частицам топлива и оболочкам. В частицах сплава U – 9 % Мо обнаружена четко выраженная текстура, возникающая при их получении, и незначительная мелкая пористость; вторичные фазы и взаимодействие с матрицей отсутствовали.
Некоторые характеристики реакторов, а также условия работы дисперсных твэлов с матрицей из магния представлены в табл. 24.46.
ДЯТ с матрицей из аустенитной стали. Коррозионно-стойкая сталь обладает удачным сочетанием многих ценных свойств: высокой коррозионной стойкостью в воде и других теплоносителях, жаропрочностью и хорошей технологичностью1. Она совместима до высоких температур с различными видами ядерного топлива. К недостаткам коррозионно-стойкой стали, как материала матрицы, следует отнести большое сечение захвата тепловых нейтронов и охрупчивание в процессе облучения. В качестве делящейся фазы в композициях с аустенитной сталью нашли применение UО2, UN, UС и некоторые другие виды керамического топлива. Дисперсные композиции на основе аустенитной стали обычно применяют при высоких температурах.
Дисперсная композиция UO2 – коррозионно-стойкая сталь. Ди-
оксид урана стехиометрического состава обладает хорошей совместимостью со сталью и не взаимодействует с ней вплоть до ее температуры плавления.
Для приготовления качественных композиций UO2 – аустенитная сталь необходимо использовать порошки диоксида урана, имеющие одинаковые размеры частиц, плотность и стехиометрию. Форма частиц должна быть эквиаксиальной и приближаться к шаровидной. Желательно, чтобы их состав находился вблизи стехиометрического значения, что снижает возможность протекания реакции взаимодействия частиц с матрицей. Однако в некоторых случаях целесообразно использовать порошок с отношением кислород/металл – 2,08, частицы которого обладают более высокой пластичностью.
Размеры частиц порошка обычно находятся в пределах 50–200 мкм и их необходимо согласовывать с толщиной активного слоя (содержащего непосредственно дисперсную композицию топливный материал–матрица) твэла. Наряду с этим, частицы порошка должны иметь необходимую механическую прочность, чтобы не раздавливаться при технологических операциях, и обладать достаточной пористостью для аккумуляции продуктов деления, образующихся в процессе выгорания топлива.
1 Физическое материаловедение. Т. 6. Ч. 1. – М.: МИФИ, 2008. П. 23.6.7.