Kluwer - Handbook of Biomedical Image Analysis Vol
.1.pdf
Advanced Segmentation Techniques |
525 |
Figure 9.25: Histogram of empirical data.
time step of 0.1 sec. Using this initialization decreases the number of iterations, leading to fast extraction of the vascular tree. The volume segmentation takes about 20 min. on the unix workstation with the super computer. Segmentation results are exposed to the connectivity filter to remove the nonvessel areas. Each volume is visualized to show the vascular tree. The segmentation accuracy was measured to be 94% which is very good for this type of data. The 2D phantom can be modified to be a 3D one simulating the whole volume leading to more accuracy. The results are promising with a good accuracy. This model can be extended to unsupervised case including a parameter estimation capability in future work. Future work will include geometrical features to the segmentation model to enhance the segmentation results.
Questions
1.What are the main three properties of MRF?
2.Using traditional EM algorithm, estimate the mean, the variance, and the proportional for the two classes shown in Fig. 9.25? (Hint: Before
applying EM algorithm, normalize f (y) such that f or all y f (y) = 1, and assume each class comes from normal distribution).
3.What are the main advantages of using the genetic algorithm as optimization tool?
4.When it is useful to use GMRF in image segmentation, and when is it not useful?
526 |
Farag, Ahmed, El-Baz, and Hassan |
5.What is the advantages of using GMRF in image segmentation?
6.Derive the CFL restriction to find the optimal time step in 3D case.
7.Suggest an algorithm to mark the narrow band points in both 2D and 3D. Compare it with the use of the Dirac delta function.
8.Level sets are used to extract anatomical structures from 2D and 3D data. What are the advantages of using level sets in 3D?
9.Using the front as the zero level embedded in the surface has many advantages over using scattered points representing the front. What are these advantages?
10.If we have the front as a surface embedded in a 4D function, can we slice the front as curves in 2D to make the implementation easier? Why?
Advanced Segmentation Techniques |
527 |
Bibliography
[1]Jain, A. K., Advances in mathematical models for image processing, Proc. IEEE, Vol. 69, No. 5, pp. 502–528, 1981.
[2]Chellapa, R. and Kashyap, R. L., Digital image restoration using spatial interaction models, IEEE Trans. Acoust., Speech, Signal Process., Vol. 30, No. 3, pp. 461–471, 1982.
[3]Besag, J. E., On the statistical analysis of dirty pictures, J. R. stat. Soc., London, B, Vol. B-48, pp. 259–302, 1986.
[4]Bouman, C. A. and Shapiro, M., A multiscale random field model for Bayessian image segmentation, IEEE Trans. Image Process., Vol. 3, No. 2, pp. 162–177, 1994.
[5]Benvensite, A., Nikoukhah, R., and Willsky, A. S., Multiscale system theory, In: Proc. 29th Conf. Decision and Control, Dec. 1990, pp. 2484– 2489, 1990.
[6]Basseville, M., Benveniste, A., Chou, K. C., Golden, S. A., Nikoukhah, R., and Willsky, A. S., Modeling and estimation of multiresolution stochastic processes, IEEE Trans. Inform. Theory, Vol. 38, No. 2, pp. 766–784, 1992.
[7]Amit, Y., Grenander, U., and Piccioni, M., Structure image restoration through deformable templates, J. Am. Stat. Assoc., Vol. 86, No. 414, pp. 376–387, 1991.
[8]Kam, A. C. and Kopec, G. E., Heuristic image decoding using separable source models, In Proc. Int. Conf. Acoustic., Speech, Signal Processing, Vol. 5, Adelaide, Australia, Apr. 19–22, pp. 145–148, 1994.
[9]Kopec, G. E. and Chou, P. A., Document image decoding using Markov source models, IEEE Trans. Pattern Anal. Machine Intell, Vol. 16, No. 6, pp. 602–617, 1994.
[10]Jain, A. K. and Dubes, R. C., Random field models in image analysis, J. Appl. stat., Vol. 16, No. 2, 1989.
528 |
Farag, Ahmed, El-Baz, and Hassan |
[11]Geman, S. and Geman, D., Stochastic relaxation, Gibbs distribution, and Baysian restoration of images, IEEE Trans. on Pattern Anal. Mach. Intell., Vol. PAMI, No. 6, pp. 721–741, 1984.
[12]Geman, S. and Geman, D., Stochastic relaxation, Gibbs distribution, and Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 6, No. 6, pp. 721–741, 1984.
[13]Besag, J. E., Spatial interaction and the statistical analysis of lattice system, J. R. Stat. Soc., London, B, Vol. 36, pp. 192–236, 1974.
[14]Serra, J., Image Analysis and Mathematical Morphology, Academic Press, New York, 1982.
[15]Derin, H. and Elliott, H., Modeling and segmentation of noisy and texture images using Gibbs random fields, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 9, pp. 39–55, 1987.
[16]Farag, A. A. and Delp, E. J., Image segmentation based on composite random field models, J. Opt. Eng., Vol. 12, pp. 2594–2607, 1992.
[17]Bouman, C. A. and Liu, B., Multiple resolution segmentation of textured images, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 13, pp. 99– 113, 1991.
[18]El-Baz, A. and Farag, A. A., Image segmentation using GMRF models: Parameters estimation and applications, IEEE International Conference on Image Processing, Barcelona, Spain, pp. 177–180, 2003.
[19]El-Baz, A. and Farag, A. A., Parameter estimation in Gibbs Markov image models, 6th international Conf. Information Fusion, Queensland, Australia, pp. 934–942, 2003.
[20]El-Baz, A. and Farag, A. A., Stochastic models in image analysis: Parameter estimations and case studies in image segmentation, IEEE Workshop on Statistical Signal Processing, St. Louis, Mo, USA pp. 154–157, 2003.
[21]Boiselle, P. M. and White, C. S., New Technique in Thoracic Imaging, Marcel Daker Inc., New York, 2002.
Advanced Segmentation Techniques |
529 |
[22]Farag, A. A., El-Baz, A., and Gimel’farb G., Detection and recognition of lung abnormalities using deformable templates, Proc. IAPR Int. Conf. Pattern Recognition (ICPR 2004), Cambridge, UK, 2004.
[23]Hu, S. and Hoffman, E. A., Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images, IEEE Trans. Med. Imaging, Vol. 20, No. 6. pp. 490–498, 2001.
[24]Condon, B. R., Patterson, J., and Wyper, D., Image nonuniformity in magnetic resonance imaging: Its magnitude and methods for its correction, Br. J. Radiol., Vol. 60, pp. 83–87, 1987.
[25]McVeigh, E. R., Bronskil, M. J., and Henkelman, R. M., Phase and sensitivity of receiver coils in magnetic resonance imaging, Med. Phys., Vol. 13, pp. 806–814, 1986.
[26]Wicks, D. A. G., Barker, G. J., and Tofts, P. S., Correction of intensity nonuniformity in MR images of any orientation, Magn. Reson. Imaging, Vol. 11, pp. 183–196, 1993.
[27]Simmons, A., Tofts, P. S., Barker, G. J., and Arrdige, S. R., Sources of intensity nonuniformity in spin echo images at 1.5 T, Magn. Reson. Med., Vol. 32, pp. 121–128, 1994.
[28]Wells, W. M., III, Grimson, W. E. L., Kikinis, R., and Jolesz, F. A., Adaptive segmentation of MRI data, IEEE Trans. Med. Imaging, Vol. 15, pp. 429– 442, 1996.
[29]Johnston, B., Atkins, M. S., Mackiewich, B., and Anderson, M., Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI, IEEE Trans. Med. Imaging, Vol. 15, No. 2, pp. 154–169, 1996.
[30]Sled, J. G., Zijdenbos, A. P., and Evans, A. C., A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Trans. Med. Imaging, Vol. 17, No. 1, pp. 87–97, 1998.
[31]Lai, S. and Fang, M., A new variational shape-from-orientation approach to correcting intensity inhomogeneities in MR images, Workshop on Biomedical Image Analysis, CVPR98, Santa Barbara, CA, pp. 56–63, 1998.
530 |
Farag, Ahmed, El-Baz, and Hassan |
[32]Meyer, C. R., Bland, P. H., and Pipe, J., Retrospective correction of intensity inhomogeneities in MRI, IEEE Trans. Med. Imaging, Vol. 14, No. 1, pp. 36–41, 1995.
[33]Tincher, M., Meyer, C. R., Gupta, R., and Williams, D. M., Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI, IEEE Trans. Med. Imaging, Vol. 12, No. 2, pp. 361–365, 1993.
[34]Brinkmann, B. H., Manduca, A., and Robb, R. A., Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction, IEEE Trans. Med. Imaging, Vol. 17, No. 2, pp. 161–171, 1998.
[35]Dawant, B., Zijidenbos, A., and Margolin, R., Correction of intensity variations in MR images for computer aided tissue classification, IEEE Trans. Med. Imaging, Vol. 12, pp. 770–781, 1993.
[36]Gilles, S., Brady, M., Declerck, J., Thirion, J. P., and Ayache, N., Bias field correction of breast MR images, Proceedings of the Fourth International Conference on Visualization in Biomedical Computing, Hamburg, Germany, pp. 153–158, 1996.
[37]Brechbuhler, C., Gerig, G., and Szekely, G., Compensation of spatial inhomogeneity in MRI based on a parametric bias estimate, Proceedings of the Fourth International Conference on Visualization in Biomedical Computing, Hamburg, Germany, pp. 141–146, 1996.
[38]Guillemaud, R. and Brady, M., Estimating the bias field of MR images, IEEE Trans. Med. Imaging, Vol. 16, No. 3, pp. 238–251, 1997.
[39]Bezdek, J. C. and Pal, S. K., Fuzzy models for pattern recognition, IEEE Press, Piscataway, NJ, 1991.
[40]Dunn, J. C., A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, J. Cybern., Vol. 3, pp. 32– 57, 1973.
[41]Bezdek, J., A convergence theorem for the fuzzy ISODATA clustering algorithms, IEEE Trans. Pattern Anal. Mach. Intell., 1980.
[42]Xu, C., Pham, D., and Prince, J., Finding the brain cortex using fuzzy segmentation, isosurfaces, and deformable surfaces, Proc. of the
Advanced Segmentation Techniques |
531 |
fifteenth Int. Conf. on Information Processing in Medical Imaging (IPMI 97), pp. 399–404, 1997.
[43]Pham, D. L. and Prince, J. L., Adaptive fuzzy segmentation of magnetic resonance image, IEEE Trans. Med. Imaging, Vol. 18, No. 9, pp. 737– 752, 1999.
[44]Ahmed, M. N., Yamany, S. M., Mohamed, N. A., Farag, A. A., and Moriarty, T., Bias field estimation and adaptive segmentation of MRI data using modified fuzzy C-means algorithm, Proc. IEEE Int. Conf. Computer Vision and Pattern Recogn., Fort Collins, Co., Vol. 1, pp. 250–255, 1999.
[45]Udupa, J. K. and Samarasekera, S., Fuzzy connectedness and object definition: Theory, algorithm and applications in image segmentation, Graph. Models and Image Process., Vol. 58, No. 3, pp. 246–261, 1996.
[46]Yamany, S. M., Farag, A. A., and Hsu, S., A fuzzy hyperspectral classifier for automatic target recognition (ATR) systems, Pattern Recognit. Lett., Vol. 20, pp. 1431–1438, 1999.
[47]Bezdek, J., Hall, L., and Clarke, L., Review of MR image segmentation using pattern recognition, Med. Phy., Vol. 20, pp. 1033–1948, 1993.
[48]Brandt, M. E., Bohan, T. P., Kramer, L. A., and Fletcher, J. M., Estimation of CSF, white matter and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images, Comput. Med. Imaging Graph, Vol. 18, pp. 25–34, 1994.
[49]Hall, L. O., Bensaid, A. M., Clarke, L. P., Velthuizen, R. P., Silbiger, M. S., and Bezdek, J. C., A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain, IEEE Trans. Neural Net., Vol. 3, pp. 672–682, 1992.
[50]Mohamed, Nevin A., Modified Fuzzy C-Mean Algorithm for Medical Image Segmentation, M.Sc. Thesis, Elect. Eng. Dept., University of Louisville, 1999.
532 |
Farag, Ahmed, El-Baz, and Hassan |
[51]Goldszal, A. F., Davatzikos, C., Pham, D. L., Yan, M. X. H., Bryan, R. N., and Resnick, S. M., An image processing system for qualitative and quantitative volumetric analysis of brain images, J. Comput. Assist. Tomogr, Vol. 22, No. 5, pp. 827–837, 1998.
[52]Sethian, J. A., Level Set Methods and Fast Marching Methods, Cambridge, 1999.
[53]Zaho, H-K., Chan, T., Merriman, B., and Osher, S., A variational level set approach to multiphase motion, J. Comput. Phys., Vol. 127, pp. 179–195, 1996.
[54]Hongchuan Yu, Dejun Wang, Zesheng Tang, Level set methods and image segmentation, IEEE International Workshop on Medical Imaging and Augmented Reality (MIAR’01), 2001.
[55]Sussman, M., Smereka, P., and Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., Vol. 114, pp. 146–159, 1994.
[56]Wilson, D. L. and Noble, J. A., An adaptive segmentation algorithm for time-of-flight MRA data, IEEE Trans. Med. Imaging, Vol. 18, No. 10, pp. 938–945, 1999.
[57]Cline, H. E., Lorensen, W. E., Kikinis, R., and Jolesz, R., Threedimensional segmentation of MR images of the head using probability and connectivity, Neurosurgery, Vol. 14, pp. 1037–1045, 1990.
[58]Nakajima, S., Atsumi, H., and Bhalerao, A. H., Computer-assisted surgical planning for cerebrovascular neurosurgery, Neurosurgery, Vol. 41, pp. 403–409, 1997.
[59]Cline, H. E., Lorensen, W. E., Souza, S. P., Jolesz, F. A., Kikinis, R., Gerig, G., and Kennedy, T. E., 3D surface rendered MR images of the brain and its vasculature, J. Comput. Assist. Tomogr., Vol. 15, pp. 344– 351, 1991.
[60]Yim, Peter J., Choyke, Peter L., and Ronald M., Summers, Gray-scale skeletonization of small vessels in magnetic resonance angiography, IEEE Trans. Med. Imaging, Vol. 19, No. 6, pp. 568–576, 2000.
Advanced Segmentation Techniques |
533 |
[61]Bullitt, E., Symbolic description of intracerebral vessels segmented from magnetic resonance angiograms and evaluation by comparison with X-ray angiograms, Med. Image Anal., Vol. 5, pp. 157–169, 2001.
[62]Hossam, H. and Farag, Aly A., MRA data segmentation using level sets, Proc. of the International Conference of Image Processing (ICIP), Barcelona, Spain, pp. 173–176, 2003.
[63]Mohamed Sabry, Sites, Charles B., Farag, Aly A., Stephen Hushek, and Thomas Moriarty, Statistical Cerebrovascular segmentation for phasecontrast MRA data, Proc. of the First International Conf. on Biomedical Engineering, Cairo, Egypt, 2002.
