
- •Долгіх, В. М.
- •1. МАТРИЦІ Й ВИЗНАЧНИКИ
- •1.1. МАТРИЦІ. ВИДИ МАТРИЦЬ
- •Види матриць
- •Деякі властивості добутку матриць
- •Властивості транспонування матриці
- •1.3. ВИЗНАЧНИКИ
- •Властивості визначників
- •1.4. ОБЕРНЕНА МАТРИЦЯ
- •Обчислення оберненої матриці методом елементарних перетворень
- •1.5. РАНГ МАТРИЦІ
- •1.5. РАНГ МАТРИЦІ
- •Обчислення рангу матриць методом елементарних перетворень
- •Поняття про лінійну залежність і незалежність рядків матриці
- •1.6. ПРИКЛАДИ ЗАСТОСУВАННЯ МАТРИЦЬ В ЕКОНОМІЦІ
- •Таблиця 1.1
- •Таблиця 1.2
- •Таблиця 1.3
- •Питання для самоперевірки
- •1.7. Вправи
- •2. СИСТЕМИ ЛІНІЙНИХ АЛГЕБРАЇЧНИХ РІВНЯНЬ
- •2.1. ОСНОВНІ ОЗНАЧЕННЯ
- •2.2. СХЕМА ДОСЛІДЖЕННЯ СИСТЕМ. ТЕОРЕМА КРОНЕКЕРА-КАПЕЛЛІ
- •Схема дослідження систем
- •2.3. МЕТОД ГАУССА (метод послідовного виключення невідомих)
- •2.4. МЕТОД ЖОРДАНА-ГАУССА (метод повного виключення невідомих)
- •2.5. СИСТЕМИ ЛІНІЙНИХ ОДНОРІДНИХ АЛГЕБРАЇЧНИХ РІВНЯНЬ
- •Однорідні системи n-го порядку (n рівнянь із n невідомими)
- •2.6. СИСТЕМИ n ЛІНІЙНИХ РІВНЯНЬ ІЗ n НЕВІДОМИМИ
- •2.6.1. Матричний метод розв’язування систем (метод оберненої матриці)
- •2.6.2. Розв’язування систем методом Крамера
- •2.7. ВЛАСНІ ВЕКТОРИ ТА ВЛАСНІ ЧИСЛА МАТРИЦІ
- •2.8. ПРИКЛАДИ ЗАСТОСУВАННЯ СИСТЕМ В ЕКОНОМІЦІ
- •Таблиця 2.1
- •Таблиця 2.2
- •Питання для самоперевірки
- •2.9. Вправи
- •Таблиця 2.3
- •Таблиця 2.4
- •Таблиця 2.5
- •3. ЕЛЕМЕНТИ ВЕКТОРНОЇ АЛГЕБРИ
- •3.1. ОСНОВНІ ОЗНАЧЕННЯ
- •3.3. ЛІНІЙНА НЕЗАЛЕЖНІСТЬ ВЕКТОРІВ
- •3.4. БАЗИС. РОЗКЛАДАННЯ ВЕКТОРА ЗА БАЗИСОМ
- •Лінійні операції над векторами в координатній формі
- •3.5. АФІННА СИСТЕМА КООРДИНАТ
- •3.6. ПРОЕКЦІЯ ВЕКТОРА НА ВІСЬ
- •3.7. ВЕКТОРИ В ОРТОНОРМОВАНОМУ БАЗИСІ. ДЕКАРТОВА ПРЯМОКУТНА СИСТЕМА КООРДИНАТ
- •Лінійні операції над векторами в базисі
- •3.8. НАПРЯМНІ КОСИНУСИ ВЕКТОРА
- •3.9. ПОДІЛ ВІДРІЗКА В ЗАДАНОМУ ВІДНОШЕННІ
- •3.10. СКАЛЯРНИЙ ДОБУТОК ВЕКТОРІВ
- •3.10. СКАЛЯРНИЙ ДОБУТОК ВЕКТОРІВ
- •Алгебраїчні властивості скалярного добутку
- •Геометричні властивості скалярного добутку
- •Скалярний добуток в ортонормованому базисі
- •Деякі важливі формули
- •3.11. ВЕКТОРНИЙ ДОБУТОК ВЕКТОРІВ
- •Алгебраїчні властивості векторного добутку
- •Геометричні властивості векторного добутку
- •Векторний добуток в ортонормованому базисі
- •3.12. МІШАНИЙ ДОБУТОК ВЕКТОРІВ
- •Основна алгебраїчна властивість мішаного добутку
- •Геометричні властивості мішаного добутку
- •Мішаний добуток в ортонормованому базисі
- •Лінійні операції над векторами
- •3.13.2. Лінійна незалежність векторів. Базис і координати
- •3.13.3. Евклідів n-вимірний простір En
- •Алгебраїчні властивості скалярного добутку
- •Кут між векторами в евклідовому просторі En
- •Таблиця 3.1
- •Питання для самоперевірки
- •3.14. Вправи
- •4. АНАЛІТИЧНА ГЕОМЕТРІЯ НА ПЛОЩИНІ
- •4.1. СИСТЕМИ КООРДИНАТ НА ПЛОЩИНІ
- •4.1.1. Декартова прямокутна система координат
- •4.1.2. Полярна система координат
- •Зв’язок між полярними та прямокутними декартовими координатами точки
- •4.1.3. Перетворення системи координат
- •Паралельне перенесення осей
- •4.2. ЛІНІЯ НА ПЛОЩИНІ. ОСНОВНІ ОЗНАЧЕННЯ
- •Параметричні рівняння лінії
- •Таблиця 4.1
- •Лінія в полярних координатах
- •Таблиця 4.2
- •4.3. ПРЯМА НА ПЛОЩИНІ
- •4.3.1. Різні форми рівнянь прямої
- •Умови паралельності й перпендикулярності двох прямих
- •4.3.3. Нормальне рівняння прямої
- •Ознаки нормального рівняння
- •4.3.4. Відстань від точки до прямої
- •4.3.5. Приклади розв’язування задач
- •4.3.6. Приклади застосування лінійної залежності в економіці
- •Лінійна залежність між витратами й обсягом виробництва продукції
- •Питання для самоперевірки
- •4.3.7. Вправи
- •4.4. АЛГЕБРАЇЧНІ ЛІНІЇ ДРУГОГО ПОРЯДКУ НА ПЛОЩИНІ
- •4.4.1. Основні поняття
- •4.4.2. Коло
- •4.4.4. Гіпербола
- •4.4.6. Криві другого порядку. Узагальнення
- •Питання для самоперевірки
- •4.4.7. Вправи
- •5. АНАЛІТИЧНА ГЕОМЕТРІЯ У ПРОСТОРІ
- •5.1. ПЛОЩИНА У ПРОСТОРІ R3
- •5.1.1. Різні форми рівнянь площини
- •Ознаки нормального рівняння
- •5.1.2. Відхилення та відстань точки від площини
- •5.1.3. Кут між двома площинами. Умови паралельності та перпендикулярності двох площин
- •5.1.4. Приклади розв’язування задач
- •5.2. ПРЯМА У ПРОСТОРІ R3
- •5.2.1. Різні форми рівнянь прямої
- •5.2.3. Відстань від точки до прямої у просторі R3
- •5.2.4. Відстань між паралельними прямими у просторі R3
- •5.2.5. Відстань між перехресними прямими у просторі R3
- •Умови паралельності й перпендикулярності прямої та площини
- •Питання для самоперевірки
- •5.2.7. Вправи
- •5.3. АЛГЕБРАЇЧНІ ПОВЕРХНІ ДРУГОГО ПОРЯДКУ
- •5.3.1. Загальне рівняння поверхні другого порядку
- •5.3.2. Еліпсоїд. Сфера
- •5.3.3. Однопорожнинний гіперболоїд
- •5.3.4. Двопорожнинний гіперболоїд
- •5.3.5. Конус другого порядку
- •5.3.6. Еліптичний параболоїд
- •5.3.7. Гіперболічний параболоїд
- •5.3.8. Циліндри
- •Питання для самоперевірки
- •5.3.9. Вправи
- •СПИСОК РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ

4.1.3. Перетворення системи координат
Нехай у системі координат xOy точка М має координати (х; у).
Паралельне перенесення осей
Якщо нова система координатx¢O¢y¢ одержана паралельним переносом початку старої системи в точкуO¢(a; b) (рис. 4.5), то нові координати точки М(х¢; у¢) пов’язані зі старими формулами:
ìx¢ = x - a, |
Û |
ìx = x¢ + a, |
(4.3) |
í |
í |
||
î y¢ = y - b |
|
îy = y¢ + b. |
|
Поворот осей на кут a
Якщо нова система x¢O¢y¢ одержана поворотом старої системи на кут a (рис. 4.6), то нові координати точки М(х¢; у¢) пов’язані зі старими формулами:
ì x¢ = x cosa + y sin a, |
Û |
ì x = x¢cosa - y¢sin a, |
(4.4) |
í |
í |
||
îy¢ = -x sin a + y cosa |
|
îy¢ = x¢sin a + y¢cosa. |
|
Рис. 4.5. Паралельне |
Рис. 4.6. Поворот осей на кут a |
|
перенесення осей |
Приклад 4.4. У системі координат xOy точка М має такі координати: х = 4, у = 6. Знайти її координати у системіx¢O¢y¢, що одержана поворотом старої системи на кут a = π / 6.
► З формул (4.4) дістанемо:
x¢ = x cosa + y sina = 4cos |
p |
+ 6sin |
p |
= 4 × |
3 |
+ 6 × |
1 |
= 2 |
|
|
+ 3, |
|||||||||||||
3 |
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
||||||||||||||||
6 |
6 |
|
2 |
|
|
2 |
|
|
|
|
|
|
|
|||||||||||
|
p |
|
p |
|
1 |
|
|
|
|
|
= 3 |
|
|
|
||||||||||
y¢ = -x sina + y cosa = -4sin |
+ 6cos |
= -4 × |
|
+ 6 × |
3 |
|
|
- 2. < |
||||||||||||||||
|
|
|
|
3 |
||||||||||||||||||||
|
|
|
|
|
|
|||||||||||||||||||
6 |
|
6 |
|
|
2 |
|
|
|
2 |
|
|
|
|
|
|
|
ДВНЗ “Українська академія банківської справи НБУ”
75