Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АЛГЕБРА_И_ГЕОМЕТРИЯ_Vareh.doc
Скачиваний:
18
Добавлен:
23.03.2015
Размер:
10.14 Mб
Скачать
    1. Поняття лінійного простору.

Означення 1. Говоритимемо, щоумножиніМвизначена внутрішня бінарна алгебраїчна операція, якщо будь-якій упорядкованій парі елементівза деяким правилом ставиться у відповідність однозначно визначений елементzϵM.

Означення 2. Говоритимемо, що в множині M визначена зовнішня операція над множиною P, якщо будь-якій парі елементів ставиться у відповідність однозначно визначений елемент множини М.

Операція додавання векторів (геометричних) відноситься до внутрішніх операцій і операція множення геометричного вектора на число є прикладом зовнішньої операції, визначеної в множині геометричних векторів над множиною дійсних чисел.

Означення 3. Векторним або лінійним простором називається непорожня множина V, в якій визначено дві операції над множиною дійсних чисел: внутрішня, що умовно називається додаванням, і зовнішня, що умовно називається множенням на дійсне число, і виконується 8 умов:

  1. –комутативність додавання.

  2. –асоціативність додавання.

  3. (x).

  4. –для довільного елемента існує протилежний до нього.

  5. –серед множини дійсних чисел є таке, що не змінює у добутку вектор.

Означення 4. Елементи множини V,що є векторним простором, називаються векторами.

Приклад 1. Всі геометричні вектори простору (площини) утворюють векторний простір відносно традиційних операцій додавання геометричних векторів і множення вектора на число. Дійсно, виконання всіх вимог означення 3 було обґрунтовано у векторній алгебрі.

Приклад 2. (арифметичний простір)

За множину Vвізьмемо множину всіх упорядкованихчисел.

Числа назвемо компонентами вектора.

Cумою векторівіназвемо вектор, утворений сумою відповідних компонент:.

Добутком вектора на число назвемо вектор .

Можна показати за означенням, що арифметичний простір є лінійним простором.

Контрприклад. За множинуVвізьмемо ту ж саму множину, що у прикладі 2. Операцію додавання введемо за тим же правилом. Операцію множення на число введемо іншим чином, а саме: добутком вектора на число назвемо вектор .

В цій множині не виконується лише вимога 7.

Бачимо, , отже ця множина не є лінійним простором.

Приклад 3. Розглянемо множину многочленів степеня не вищого за .

Операції додавання многочленів та множення на число вводиться традиційним способом.

Легко перевірити виконання всіх вимог означення, тому дана множина є векторним простором відносно введених операцій.

Контрприклад. Розглянемо множину многочленів лише -го степеня, тобто таких, коефіцієнт при старшому члені яких ненульовий.

У цьому випадку множина не є векторним простором, тому що в цій множині не визначена операція додавання.

Дійсно, наведемо два многочленів, сума яких не є многочленом -го степеня:

Наприклад, сума та є многочленом 1-го степеня.

Приклад 4. Розглянемо множину всіх функцій, що визначені на проміжку . Додавання і множення функцій на число введемо традиційним способом, як у математичному аналізі. При цьому також виконуються всі вимоги означення векторного простору, тому дана множина відносно введених операцій є векторним простором.

Приклад 5. Розглянемо множину всіх функцій, що є неперервними на проміжку . Додавання і множення функцій на число введемо традиційним способом, як у математичному аналізі. Легко переконатися, що при цьому виконуються всі інші 8 вимог означення векторного простору. Тому множина таких функцій відносно введених операцій є векторним простором.