Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АЛГЕБРА_И_ГЕОМЕТРИЯ_Vareh.doc
Скачиваний:
18
Добавлен:
23.03.2015
Размер:
10.14 Mб
Скачать
    1. Геометрична інтерпретація поняття лінійної залежності.

З’ясуємо геометричний зміст поняття лінійної залежності.

Теорема 1. Для того, щоб система з одного вектора була лінійно залежною, необхідно і достатньо, щоб цей вектор був нульовим.

Теорему 1 було обґрунтовано у зауваженні попереднього параграфу.

Теорема 2. Необхідною і достатньою умовою лінійної залежності двох векторів є їх колінеарність.

Доведення.

Необхідність. Припустимо, що вектори утворюють лінійно залежну систему.

Доведемо, що вектори колінеарні.

Отже один з векторів є лінійною комбінацією. Нехай це (для визначеності). Тоді , тобто вектори колінеарні.

Достатність. Припустимо, що . Покажемо, що система лінійно залежна.

Можливі випадки:

1) Принаймні один з векторів нульовий. Тоді твердження очевидне, тому що в системі міститься лінійно залежна підсистема.

2)Обидва вектори ненульові.

Для доведення потрібна такалема.

Лема. Якщо і , то : .

Дійсно, якщо , то , якщо , то .

Згідно із лемою маємо, що . Таким чином система лінійно залежна.

Теорему доведено.

Теорема 3. Необхідною і достатньою умовою лінійної залежності трьох векторів є їх компланарність.

Доведення.

Необхідність. Припустимо, що вектори утворюють лінійно залежну систему. Покажемо, що вони компланарні.

Якщо серед векторів системи пара колінеарних, то очевидно, що вони є компланарними. Нехай тоді вектори попарно неколінеарні. Тоді за означенням 1 лінійної залежності існує вектор (наприклад, ), що є лінійною комбінацією інших .

Візьмемо точку Аі прикладемо до неївектори .Побудуємо паралелограм зі сторонами.

(для визначеності )

Тоді з попередньої рівності випливає, що – сторони і діагональ паралелограма. Отже ці вектори компланарні. Оскільки , то векторитакож компланарні.

Достатність. Припустимо, що – компланарні. Покажемо, що вони лінійно залежні.

Якщо серед векторів системи пара колінеарних, то в системі є лінійно залежна підсистема і тому вся система залежна. Нехай тоді вектори попарно неколінеарні.

Прикладемо вектори до однієї точки А і побудуємо паралелограм ABDCздіагоналлю і сторонами, що знаходяться на прямих, на яких знаходяться вектори . Тоді .

Оскільки , то . Тоді , тобто є лінійною комбінацією і . Отже вектори лінійно залежні за першим означенням.

Теорему доведено.

Теорема 4. Довільнічотиривектори геометричногопростору лінійно залежні.

Доведення.

Нехай маємо систему . Якщо серед них є трійка компланарних, то вони очевидно лінійно залежні. Нехай такої трійки немає.

Візьмемо точку А і прикладемо до неї дані вектори. Побудуємо паралеліпіпед, діагональ якого є , а ребра знаходяться на прямих, що містять вектори .

За означенням додавання векторів маємо . Оскільки ,маємо .

Тоді , а тому – лінійно залежна.

Теорему доведено.

Зауваження.Мимохідь ми довели таке важливе твердження: будь-який вектор у просторі можна розкласти за трійкою некомпланарних векторів.

    1. Поняття базису простору і площини

Означення. Максимальноюлінійно незалежною системою векторів простору (площини) називається така лінійно незалежна система векторів, приєднання до якої будь-якого вектору простору (площини) приводить до лінійно залежної системи.

Означення. Базисом називається упорядкована максимальна лінійнонезалежна система векторів простору(площини).

З попереднього випливає, що базисом площини є будь-яка упорядкована система двох неколінеарних векторів, а базисом простору – будь-яка упорядкована трійка некомпланарних векторів.

Теорема. Будь-який вектор площини(простору) можна розкласти і при тому єдиним чином за векторами базису.

Доведення.

Доведемо цю теорему в просторі.

Розглянемо базисні вектори .Візьмемо довільний вектор .

Зауважимо, що можливість розкладання доведено у теоремі 4 про геометричний зміст лінійної залежності.

Тож маємо .

Доведемо єдиність розкладання.

Припустимо супротивне, що для має місце ще одне розкладання.

.

Зауважимо, що оскільки розкладання відрізняються, то різними є принаймні одна пара коефіцієнтів ci, di. Припустимо (для визначеності), що .

Тоді отримуємо:

Оскільки , то отримано рівність , що стверджує про лінійну залежність векторів базису. Отримано суперечність до означення базису.

Теорему доведено.

Означення. Координатами вектора у заданому базисі називаються коефіцієнти розкладання цього вектора за векторами базису.