Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Статистика Гусаров.doc
Скачиваний:
148
Добавлен:
22.02.2015
Размер:
10.85 Mб
Скачать

Стохастическая связь между производительностью труда, внутрисменными простоями и квалификацией рабочих

203

Теоретический анализ исходных данных позволяет установить наличие причинно-следственной связи факторных признаков (внутри-сменных простоев и квалификации рабочих) с результативным показателем - производительностью труда. Регрессионную двухфакторную модель построим в линейной формеи проверим ее адекватность.

Для нахождения параметров этого уравнения произведем вычисления вспомогательных величин, которые запишем в табл. 9.4.

Таблица 9.4

К расчету параметров и оценке линейной двухфакторной регрессионной модели

Составим систему нормальных уравнений:

Решая данную систему методом К. Гаусса, получаем

a0= 81,03; a1= -0,41; a2= 3,37.

Уравнение множественной регрессии, выражающее зависимость производительности труда ŷ от внутренних простоев x1и квалификации рабочих x2, примет вид:

Вычислим по нему ŷx1 x1и занесем полученные значения в табл.9.4.

После построения регрессионной модели необходимо исчислить различного рода характеристики тесноты связи между

204

зависимой и независимой переменными: парные, частные и множественные коэффициенты корреляции, множественный коэффициент детерминации, а затем проверить адекватность данной модели.

205

9.2.2.8. Парные коэффициенты корреляции

Для измерения тесноты связи между двумя из рассматриваемых переменных (без учета их взаимодействия с другими переменными) применяются парные коэффициенты корреляции. Методика расчета таких коэффициентов и их интерпретация аналогичны методике расчета линейного коэффициента корреляции в случае однофакторной связи. Если известны средние квадратические отклонения анализируемых величин, то парные коэффициенты корреляцииможно рассчитать проще по следующим формулам:

#ALARM#

Предварительно исчислим средние квадратические отклонения:

#ALARM-FONT#

Тогда парные коэффициентыкорреляции будут равны:

9.2.2.9.Частные коэффициенты корреляции

Однако в реальных условиях все переменные, как правило, взаимосвязаны. Теснота этой связи определяется

205

частными коэффициентами корреляции, которые характеризуют степень и влияние одного из аргументов на функцию при условии, что остальные независимые переменные закреплены на постоянном уровне. В зависимости от количества переменных, влияние которых исключается, частные коэффициенты корреляции могут быть различного порядка: при исключении влияния одной переменной получаем частный коэффициент корреляции первого порядка; при исключении влияния двух переменных - второго порядка и т.д. Парный коэффициент корреляции между функцией и аргументом обычно не равен соответствующему частному коэффициенту.

Частный коэффициент корреляциипервого порядка между признаками x1иупри исключении влияния признака x2вычисляют по формуле:

то же - зависимость у от x2при исключении влияния x1:

Можно рассчитать взаимосвязь факторных признаков при устранении влияния результативного признака:

где r- парные коэффициенты корреляции между соответствующими признаками.

Выполним расчет частных коэффициентов корреляциидля нашею примера:

206

Итак, связь каждого фактора с изучаемым показателем при условии комплексного воздействия факторов слабее. Практически отсутствует связь между факторными признаками при элиминировании результативного показателя rx1x2(y)= -0,058. Это вполне понятно - внутрисменные простои и квалификация рабочих никак не связаны между собой (если не принимать во внимание необходимость выполнения задания). Другое дело, если стоит вопрос о выполнении задания: более квалифицированный рабочий допустит меньше внутрисменных простоев. Значение парного коэффициента корреляции, в этом случаеrx1x2= -0,609 , подтверждает наличие довольно заметной обратной связи между этими факторами.

Изучение парных и частных коэффициентов корреляции позволяет отобрать наиболее существенные, значимые факторы.

На основе парных коэффициентов корреляции и средних квадратических отклонений можно легко рассчитать параметры уравнения линейной двухфакторной связи по следующим формулам: