Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 700428.doc
Скачиваний:
88
Добавлен:
01.05.2022
Размер:
6.34 Mб
Скачать

17. Циклы компрессоров

Это машины для сжатия газов и перемещения их к потребителям по трубопроводным системам.

По способу действия их можно разделить на три основные группы: объемные (компрессоры статического сжатия), лопастные (компрессоры динамического сжатия) и струйные (эжекторы).

По конструктивному признаку объемные компрессоры подразделяют на поршневые и роторные, а лопастные – на центробежные и осевые.

Если давление сжатия свыше 0,4 МПа, то устройство называют компрессором, при давлении от 0,11 МПа до 0,4 МПа – воздуходувкой и при давлении ниже 0,11 МПа – вентилятором.

Несмотря на различие в принципе сжатия газа в объемных (в результате принудительного уменьшения его объема) и лопастных (от действия инерционных сил, возникающих при вращении колеса) компрессора термодинамика процессов сжатия в них одинакова.

Рис. 17.1. Термодинамика компрессоров

Термодинамический анализ работы компрессоров обычно выпол­няют на примере работы поршневых компрессоров, процессы в ко­торых могут быть рассмотрены наиболее наглядно. Основными элементами их являются цилиндр б и совершающий возвратно-поступательные движения поршень а, связанный своим штоком в с ползунком г, движущимся в неподвижных направляющих д. Ползун шарнирно соединен с шатуном е и через него с кривошипом или коленчатым валом (на рис, нет), который вращается приводным двигателем (электродвигателем или поршневым ДВС).

Анализ процесса сжатия в поршневом компрессоре удобно проводить с помощью, так называемой индикаторной диаграммы ком­прессора, которая показывает зависимость величины давления в цилиндре компрессора от величины переменного объема газа в цилиндре или, что то же самое, от хода поршня. Записывается эта диаграмма специальным прибором - –инамометрическим индика­тором, присоединенным к компрессору. Отличие индикаторной диаграммы от -диаграммы в том, что она изображает процессы в цилиндре, количество газа в котором переменно. При ходе поршня из левого крайнего положения в правое крайнее в цилиндр компрессора засасывается газ, который затем при обратном ходе поршня сначала сжимается, а потом выталкивается в газосборник. В крышке цилиндра предусмотрены два клапана: впускной и выпускной. При засасывании газа впускной клапан открыт, а выпускной закрыт. В процессе сжатия газа, продолжающегося на части обратного хода поршня, оба клапана закрыты. По окончании процесса сжатия выпускной клапан открывается, и поршень на оставшейся части пути до крайнего левого положения выталкивает сжатый газ в сборник.

Идеализированные процессы всасывания, сжатия и выталкивания газа отображаются на графике соответственно линиями 4-1, 1-2 и 2-3. Газ в компрессоре можно сжимать в зависимости от степени охлаждения цилиндра по закону адиабаты (1-2’’), изотермы (1-2) или политропы (1-2’).

В первом случае отсутствует теплообмен с внешней средой (цилиндр идеально изолирован) и сообщаемая газу от первичного двигателя работа расходуется на увеличение внутренней энергии ТРТ, в результате чего его температура возрастает.

Во втором случае количество тепла, эквивалентное работе, передаваемой пару от первичного двигателя, в результате водяно­го охлаждения цилиндра отводится от ТРТ и его температура остается неизменной.

В третьем случае, т.е. когда , часть работы, передаваемая от первичного двигателя газу, расходуется на увеличение его внутренней энергии, вследствие чего его температура возрастает, а остальная, часть работы двигателя не используется, т.к. в результате охлаждения от ТРТ отводится тепло, эквивалентное части этой работы.

Полная (суммарная) работа компрессора, т.е. работа, затрачиваемая на привод компрессора (всасывание, сжатие и выталкивание), будет выражаться суммой площадей, из которых две расположены под линиями сжатия и выталкивания (берутся с положительным знаком), а одна - –од линией всасывания (с отрицательным знаком). Следовательно, если для удобства считать эту работу положительной, то ее можно выразить уравнением .

Полная работа компрессора при изотермическом сжатии для 1 кг ТРТ lиз выражается алгебраической суммой площадей lиз = пл. 1-2-II-1` + пл. 2-3-0-II + пл. 4-1-1`-0 =пл. 1-2-3-4.

Площади 1-2-II-1` соответствует работа , Дж/кг.

Площади 2-3-0-II соответствует работа , а площади 4-1-1`-0 – работа , но для изотермического процесса , поэтому полная (суммарная) работа компрессора равна ,Дж/кг. Для кг или м3 рабочего тела это выражение таково: , Дж.

Для 1 м3 рабочего тела работа выражается следующим образом:

, Дж/м3. (17.1)

Полная (суммарная) работа компрессора при адиабатном сжатии для 1 кг ТРТ выражается алгебраической суммой площадей: = пл. 1-2``-II``-1` + пл. 2``-3-0-II`` – пл. 4-1-1`-0 = пл. 1-2``-3-4.

Заменяя площади величинами соответствующих работ, получим

.(17.2)

Эту же работу можно выразить и так: ,

откуда следует, что

, Дж/кг. (17.3)

Полная (суммарная) работа компрессора при политропном сжатии по аналогии с формулой (17.2) равна:

(17.4)

Поступая так же, как и в случае изотермического сжатия, можно получить выражения для и 1 м3 рабочего тела.

Из сопоставления площадей, соответствующих полной (суммарной) работе компрессора при изотермическом, политропном и адиабатном сжатии ТРТ, видно, что наиболее экономичным являет­ся компрессор, в котором ТРТ сжимается изотермически.

Рис. 17.2. - диаграмма

Построим процессы изотермического и адиабатного сжатия газа на - диаграмме.

Изотермический процесс сжатия будет отображаться горизонтальным отрезком 1-2, а адиабатный процесс сжатия - –ертикальным отрезком 1-2``, заключенными между двумя изобарами, и , соответствующими начальному и конечному давлениям газа. Количество тепла, которое должно быть отнято от газа в изотермическом процессе, эквивалентное полной работе сжатия выражается пл. 1-2-b-a.

Для адиабатного процесса разность энтальпий выражается разностью площадей d-2``-a и c-1-a. Ввиду эквидистантности изобар и площадь с-1-а равна площади d-2-b и поэтому разность энтальпий , равная работе компрессора, может быть выражена площадью b-2-2``-a.

Таким образам, - диаграмма наглядно показывает, что суммарная работа компрессора, у которого сжатие происходит по адиабате, превышает работу компрессора (в тех же интервалах давления), у которого сжатие происходит по изотерме.

При политропном сжатии в условиях менее интенсивного теплоотвода, чем при изотермическом сжатии, процесс изображается наклонной линией 1-2* с отрицательным наклоном (температура растет, а энтропия уменьшается).

Для случая политропного сжатия с подводом тепла процесс сжатия изображается наклонной линией с увеличением энтропии. Реальный процесс сжатия будет иметь вид кривой , т.к. в начале сжатия к холодному газу подводится тепло от горячих стенок цилиндра, а затем, по мере сжатия, газ разогревается и отдает тепло стенкам цилиндра, т.е. в реальном процессе сжатия показатель политропы не постоянен. Тепло, отведенное (или подведенное) в процессе сжатия, определяется площадкой в определенном масштабе под кривой про­цесса в проекции на ось . Аналитическая зависимость для определения отведенного тепла от I кг газа имеет вид:

, или,

учитывая, что: ; ; , отведенное тепло равно .

Для изотермического сжатия - неопределенность, поэтому, учитывая, что в этом процессе тепло полностью расхо­дуется на совершение работы (здесь отведенное тепло эквивалент­но выигранной работе) имеем:

, или .

Увеличение энтальпии газа определяется его изобарной теплоемкостью и изменением температуры , т.е.

.

Рис. 17.3. Pv - –иаграмма

Действительный цикл поршневого компрессора отличается от идеального, во первых, тем, что в цилиндре имеется так называемое «вредное пространство», равное объему между крышкой цилиндра и поршнем в его крайнем положении (здесь размещается клапанное устройство). Обычно вредное пространство составляет 310% от объема цилиндра .

По окончании выталкивания газа в остается сжатый газ. При обратном движении поршня, оставшийся газ расширяется и всасывание новой порции начинается лишь тогда, когда давление газа, оставшегося в цилиндре, понизится от давления нагнетания до давления всасывания . Так что в цилиндр всасывается лишь объем . Наличие уменьшает количество газа, всасываемого в цилиндр, и тем самым снижает производительность поршневого компрессора. Уменьшение производительности характеризуется объемным к.п.д. , где - объем, описываемый поршнем.

Наполнение цилиндра ухудшается, кроме того, за счет подогре­ва всасываемого газа о стенки цилиндра и в результате смешения его с остальным газом (подогрев от до ). Количество газа, всасываемого без учета подогрева и с учетом соответст­венно равно и , а их отношение .

Общее уменьшение производительности из-за вредного простран­ства и нагрева характеризуется коэффициентом наполнения .

Если путем регулировки пружины выпускного клапана увели­чивать давление нагнетания (точки 2, 2'... 2")» то объем всасываемого газа будет уменьшаться, и в предельном случае нагне­тания газа не будет проис­ходить (клапан выпуска не откроется при переме­щении поршня до самой верхней течки). При этом линия расширения газа, оставшегося в , совпадает с линией сжатия и производительность компрессора становится рав­ной нулю, поршень периодически сжимает одно и то же количество газа без нагнетания. Предельное давление , можно рас­считать по формуле:

, где - относительная величина вредного пространства.

Рис. 17.4. Техническая работа

Техническая работа, затрачиваемая на совершение одного цикла, численно в определенном масштабе, равна площади 1234, которая, может быть представлена в виде разности площадей a12b и a43b, или аналитически.

Учитывая, что и , имеем

.

Рис. 17.5. Работа на преодоление гидросопротивления

Количество газа, всасываемого за цикл , кг.

Работа, затрачиваемая на 1 кг газа .

Значит, наличие "в«едного пространства" »е изменяет вели­чины теоретической работы, затрачиваемой на получение одного и того же количества сжатого газа, потребуется лишь большее число ходов поршня, что увеличивает механические потери.

Второе отличие действительной индикаторной диаграммы от теоретической в том, что вследствие сопротивления во впуск­ном и выпускном патрубках, всасывание происходит при давлении в цилиндре, меньшем давления среды, из которой происходит всасы­вание, а давление сжатого газа в цилиндре компрессора несколько больше давления на выходе нагнетательного патрубка.

Таким образом, получить газ высокого давления в одноступенчатом компрессоре невозможно в связи с уменьшением его производительности при повышении давления. Кроме того одновременно с повышением давления увеличивается и температура сжимаемого газа, и она может достигнуть такого значения, при котором произойдет самовоспламенение смазочного масла в цилинд­ре. Поэтому такие компрессоры обычно применяют для получения сжатого воздуха давлением не выше 1,0 МПа. Практически сжатие происходит обычно по политропе с показателем до .