Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матанализ Билеты 1 Курс.pdf
Скачиваний:
313
Добавлен:
08.02.2015
Размер:
2.63 Mб
Скачать

Часть 15

Дифференциальное исчисление функции одной переменной

1Производная функции

1.1 Понятие производной

Рассмотрим ( ), определенную на ( ; ). Пусть ( ; ) — предельная точка. Выберем: + ( ; ). Будем говорить, что — приращение аргумента. Величина =

( +Δ )− ( ) называется приращением функции , отвечающим приращению аргумента. Из этого можно вывести иное определение непрерывности функции в точке, называемое

разностной формой непрерывности:

 

 

( )

 

C( )

 

 

 

= ( +

 

)

( )

−−−→

0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Назовем производной функции в точке

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( ) =

lim

 

 

 

= lim

 

 

( +

 

 

) − ( )

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

→0

 

 

 

 

→0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Или, что то же самое, ( 0) = lim

 

 

( )− ( 0)

. Рассмотрим несколько примеров:

 

 

 

 

 

 

 

 

 

 

0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.

( ) = = .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( ) = lim

 

 

 

= 0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

→0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.

( ) = .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( ) =

lim

 

+

= 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

→0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.

( ) = sin .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 sin

 

 

 

cos ( +

 

)

=

 

 

 

 

 

 

 

 

( ) = lim

sin( +

)

 

 

sin

 

 

lim

 

 

2

2

lim cos

+

 

= cos .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

→0

 

 

 

 

= →0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

→0

(

)

4.

( ) = cos .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− 2 sin ( +

 

 

)sin

 

=

 

 

 

( ) = lim

cos( +

) − cos

=

lim

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

→0

 

 

 

=

→0

 

 

 

 

 

+

→0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(− sin (

 

 

2

) ) = − sin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46