Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теоретическая механика пособие Носова В.Н..doc
Скачиваний:
46
Добавлен:
16.11.2019
Размер:
18.82 Mб
Скачать

Глава 11. Кинетический момент системы и твёрдого тела.

§ 1. Теорема об изменении главного момента количества движения системы материальных точек.

Напомним, что момент количества движения системы или кинетический момент определяется выражением

,

Продифференцируем написанное выражение по времени

Первое слагаемое равно нулю как векторное произведение равных векторов (ведь ), а второе, с учётом (3.14) получается равным

В правой части первое слагаемое – главный вектор внешних сил, а второе- главный вектор внутренних сил, который равен нулю. Итак, окончательно имеем

(3.21)

Это соотношение выражает теорему об изменении кинетического момента: векторная производная по времени от главного момента количества движения системы равна главному моменту внешних сил, приложенных к системе. Равенство нулю главного момента внутренних сил приводит к заключению, что внутренние силы не могут влиять на измене­ние кинетического момента системы.

Формула (3.21) оказываются существенно необходимой при изучении динамики враща­тельных движений твердого тела или системы тел. С помощью этих двух фундаментальных законов

(3.22)

можно получить дифференциальные уравнения движения твёрдого тела и системы тел. В разделе статика указывалось, что необходимыми и достаточными условиями равновесия являлись равенство нулю главного вектора и главного момента сил. Уравнения (3.22) можно переписать в форме, похожей на уравнения статики виде

Эти уравнения называются уравнениями кинетостатики, где индекс a обозначает активные силы и моменты активных сил, «r» – силы реакций и моменты сил реакций, а индекс « »- силы инерции и моменты сил инерции, которые равны

,

§ 3. Кинетический момент тела, вращающегося относительно неподвижной точки.

Скорость точек тела, вращающегося относительно неподвижной точки, определяется формулой или в проекциях на оси декартовой системы координат

Подставляя полученные формулы в выражение (3.16), получаем

(3.23)

Раскрывая полученные произведения и приводя подобные члены при проекциях угловых скоростей, заметим, что мы получаем одинаковые сомножители типа

(3.24)

(3.25)

Выражения, задаваемые формулами (3.24) носят названия осевых моментов инерции. Моментом инерции системы материальных точек относи­тельно оси называется сумма произведений масс этих точек на квадраты их расстояний до оси, а (3.25) – центробежных моментов инерции. Формулы (3.24) и (3.25) для сплошного твёрдого тела можно записать в интегральной форме

(3.26)

(3.27)

Тройной интеграл берётся по объёму всего тела. Подставим полученные моменты инерции в (3.23)

(3.27)

Выражение (3.27) можно представить в матричной форме

здесь - вектор столбец кинетического момента, - вектор столбец угловой скорости, а - матрица моментов инерции тела.