Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК-эконометрика-ЧелГУ-печатать.docx
Скачиваний:
7
Добавлен:
04.05.2019
Размер:
2.96 Mб
Скачать

4.4. Экспоненциальная и степенная однофакторная регрессии.

Экспоненциальная модель линеаризуется аналогично (4.1):

Переходя к новым переменным получаем линейную регрессионную модель:

Экспоненциальная однофакторная регрессия имеет вид

ŷ = е + b (или ŷ= baх); (4.8)

степенная однофакторная регрессия имеет вид

ŷ = а; (4.9)

Для нахождения коэффициентов а и b предварительно проводят процедуру линеаризации выражений (4.8) и (4.9):

lnŷ= lnb+xlnа, (4.10)

lnŷ= lnblnx, (4.11)

а затем уже строят линейную регрессию между lnŷ и х для экспоненциальной регрессии, и между lnŷ и lnх для степенной регрессии.

Наибольшее распространение степенной функции в эконометрике связано с тем, что параметр а имеет четкое экономическое истолкование, – он является коэффициентом эластичности. Это значит, что коэффициент b показывает, на сколько % в среднем изменится результат, если фактор изменится на 1%.

    1. Формирование нелинейных однофакторных регрессионных моделей на компьютере с помощью ппп Excel

Для вычисления параметров экспоненциальной регрессии (4.8) на компьютере (в Excel) используется встроенная статистическая функция ЛГРФПРИБЛ. Порядок вычисления аналогичен применению функции ЛИНЕЙН.

Для вычисления параметров степенной регрессии после преобразования исходных данных в соответствие с (4.11), можно воспользоваться функцией ЛИНЕЙН.

Для получения графиков однофакторных регрессий можно применить Мастер диаграмм, строя предварительно точечный график исходных данных (диаграмму рассеяния), а затем использовать режим Добавить линию тренда (для этого установите курсор на любую точку точечной диаграммы и щелкните правой кнопкой мышки), причем в этом режиме Excel предоставляет возможность выбора шести функций – линейной, логарифмической, полиномиальной, степенной, экспоненциальной и скользящей средней. После выбора функции в режиме Параметры задайте флажок Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации(R^2).

    1. Практический блок Пример

Задача 1. По некоторым территориям районов края известны значения среднего суточного душевого дохода в у.е. (фактор X) и процент от общего дохода, расходуемого на покупку продовольственных товаров (фактор Y) (табл. 4.1).

Требуется для характеристики зависимости У от X рассчитать параметры линейной, степенной, показательной функции и выбрать оптимальную модель (провести оценку моделей через среднюю ошибку аппроксимации (А) и F-критерий Фишера.

Таблица 4.1

Район

у

х

Пожарский (1)

68,8

45,1

61,277

7,5231

11,4989

56,5970

Кавалеровский (2)

61,2

59,0

56,4689

4,7311

2,00817

22,3833

Дальнегорский (3)

59,9

57,2

57,0915

2,8085

0,63123

7,88767

Хасанский (4)

56,7

61,8

55,5004

1,1996

5,69109

1,43904

Лесозаводский (5)

55,0

58,8

56,5381

1,5381

1,81683

2,36575

Хорольский (6)

54,3

47,2

60,5505

6,2505

7,09956

39,0687

Анучинский (7)

49,3

55,2

57,7833

8,4833

0,01055

71,9664

итого

405,2

32,534

28,7563

201,708

среднее

57,886

4,6477

РЕШЕНИЕ.

1а. Для расчета параметров а и b линейной регрессии у=аx+ b решаем систему нормальных уравнений относительно а и b (или используем EXCEL).

Получаем уравнение регрессии: у = 76,88 – 0,35x.

С увеличением среднедневной заработной платы на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,35 %-ных пункта.

Рассчитаем линейный коэффициент парной корреляции: r= -0,35326.

Связь умеренная, обратная.

Определим коэффициент детерминации:

R2 = 0,1248.

Вариация результата на 12,5% объясняется вариацией фактора х. Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчетные) значения (см. табл. 4.1).

Найдем величину средней ошибки аппроксимации А:

(4,647744/57,88571)100%=0,080292.

В среднем расчетные значения отклоняются от фактических на 8,03%.

Рассчитаем F-критерий:

Fтабл = 6,6 > Fфакт, при γ = 0,05.

Полученное значение указывает на необходимость принять гипотезу Н0 о случайной природе выявленной зависимости и статистической незначимости параметров уравнения и показателя тесноты связи.

1б. Построению степенной модели у= bxа предшествует процедура линеаризации переменных. Линеаризация производится путем логарифмирования обеих частей уравнения:

lgy = lg b + a lgх , или Y = С + аХ,

где Y = lg(y), X = lg(x), C = lg(b).

Для расчетов используем формулы для линейной регрессии (или используем EXCEL).

Получим уравнение: у = 190,03х-0,2984 . R2 =0,1157.

Характеристики степенной модели указывают, что она несколько хуже линейной функции описывает взаимосвязь.

1в. Построению уравнения показательной кривой у=х предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:

lgy = lg b + хlgа , или Y = С + хlgа, и опять же можно использовать формулы для линейной регрессии(или EXCEL).

Получим уравнение: у = 77,24е-0,0053х . R2 =0,1026.

Показательная функция еще хуже, чем степенная, описывает изучаемую зависимость.

1г. Уравнение равносторонней гиперболы у=а/x+ b линеаризуется при замене: x = 1/z .

Тогда у=аz+b. Для расчетов используем формулы для линейной регрессии (или используем EXCEL).

Получено уравнение: у = 38,435 + 1054.7/x. R2 =0.1539.

По уравнению равносторонней гиперболы получена наибольшая оценка тесноты связи (по сравнению с линейной, степенной и показательной регрессиями). A остается на допустимом уровне: 8,1%.

Следовательно, принимается гипотеза Н0 о статистически незначимых параметрах этого уравнения. Этот результат можно объяснить сравнительно невысокой теснотой выявленной зависимости и небольшим числом наблюдений.