Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические методы и модели в экономике.doc
Скачиваний:
110
Добавлен:
08.03.2016
Размер:
8.1 Mб
Скачать

2.8.3. Распределение q средств между n предприятиями.

Пусть хn – средства, выделенные n-му предприятию; они приносят в конце года прибыль сn(хn).

Будем считать, что хn принимает только целые значения, прибыль сn(хn) не зависит от вложения средств в другие предприятия и суммарная прибыль равна сумме прибылей, полученных от каждого предприятия. Тогда модель имеет вид:

Найти целочисленные неотрицательные переменные хn (n=1,2,…,N), удовлетворяющие ограничению:

nхn = Q, (2.8.2)

и обращающие в максимум функцию

С=∑n сn(хn). (2.8.3)

Здесь процесс распределения средств можно рассматривать как многошаговый, номер шага совпадает с номером предприятия; состояние будет определяться величиной sn – количество средств, подлежащих распределению на n-м шаге (с конца).

Обозначим fn(sn) – условную оптимальную прибыль, полученную от последних n предприятий при распределении между ними sn средств и вычисляемую в соответствие с динамическим рекуррентным соотношением:

fn(sn)=mаххn(хn) + fn-1(sn-1)), n=1,2,…,N. (2.8.4)

Пример 2.8.2. Пусть N = 4, Q =5, значения сn(хn) заданы в табл. 2.8.1.

Таблица 2.8.1.

х

с4(х)

с3(х)

с2(х)

с1(х)

1

8

6

3

4

2

10

9

4

6

3

11

11

7

8

4

12

13

11

13

5

18

15

18

16

Как и в предыдущем примере начинаем анализ с последнего предприятия. Индекс «1» соответствует последнему предприятию, а индекс «4» – первому. Для n=1 прибыль проставлена в последней колонке.

Для n=2

f2(0)=mах[с2(0)+f1(0)]=0 при x2(0)=0,

f2(1)=mах[с2(1)+f1(0),с2(0)+f1(1)]=mах[3+0,0+4]=4 при x2(1)=0,

f2(2)=mах[с2(2)+f1(0),c2(1)+f1(1),с2(0)+f1(2)]=

=mах[4+0,3+4,0+6]=7 при x2(2)=1,

f2(3)=mах[с2(3)+f1(0),с2(2)+f1(1),с2(1)+f1(2),с2(0)+f1(3)]=

=mах[7+0,4+4,3+6,0+8]=9 при x2(3)=1,

f2(4)=mах[с2(4)+f1(0),с2(3)+f1(1),с2(2)+f1(2),с2(1)+f1(3),с2(0)+f1(4)]=

=mах[11+0,7+4,4+6,3+8,0+13]=13 при х2(4)=0,

f2(5)=mах[с2(5)+f1(0),с2(4)+f1(1),с2(3)+f1(2),с2(2)+f1(3),с2(1)+f1(4),с2(0)+f1(5)]

=mах[18+0,11+4,7+6,4+8,3+13,0+16]=18 при x2(5)=5.

Для n=3

f3(0)=mах[с3(0)+f2(0)]=0 при x3(0)=0,

f3(1)=mах[с3(1)+f2(0),с3(0)+f2(1)]=mах[6+0,0+4,]=6 при x3(1)=1,

f3(2)=mах[с3(2)+f2(0),c3(1)+f2(1),с3(0)+f2(2)]=

=mах[9+0,6+4,0+7]=10 при x3(2)=1,

f3(3)=mах[с3(3)+f2(0),с3(2)+f2(1),с3(1)+f2(2),с3(0)+f2(3)]=

=mах[11+0,9+4,6+7,0+9]=13 при x3(3)=1 или 2,

f3(4)=mах[с3(4)+f2(0),с3(3)+f2(1),с3(2)+f2(2),с3(1)+f2(3),с3(0)+f2(4)]=

=mах[13+0,11+4,9+7,6+9,0+13]=16 при х3(4)=2,

f3(5)=mах[с3(5)+f2(0),с3(4)+f2(1),с3(3)+f2(2),с3(2)+f2(3),с3(1)+f2(4),с3(0)+f2(5)]

=mах[15+0,13+4,11+7,9+9,6+13,0+18]=19 при x3(5)=1.

И, наконец, для n=4

f4(0)=mах[с4(0)+f3(0)]=0 при x4(0)=0,

f4(1)=mах[с4(1)+f3(0),с4(0)+f3(1)]=mах[8+0,0+6,]=8 при x4(1)=1,

f4(2)=mах[с4(2)+f3(0),c4(1)+f3(1),с4(0)+f3(2)]=

=mах10+0,8+6,0+10]=14 при x4(2)=1,

f4(3)=mах[с4(3)+f3(0),с4(2)+f3(1),с4(1)+f3(2),с4(0)+f3(3)]=

=mах[11+0,10+6,8+10,0+13]=18 при x4(3)=1,

f4(4)=mах[с4(4)+f3(0),с4(3)+f3(1),с4(2)+f3(2),с4(1)+f3(3),с4(0)+f3(4)]=

=mах[12+0,11+6,10+10,8+13,0+16]=21 при х4(4)=1,

f4(5)=mах[с4(5)+f3(0),с4(4)+f3(1),с4(3)+f3(2),с4(2)+f3(3),с4(1)+f3(4),с4(0)+f3(5)]

=mах[18+0,12+6,11+10,10+13,8+16,0+19]=24 при x4(5)=1.

Теперь соберем оптимальное решение (при последовательном рассмотрении всех состояний оптимальные переходы подчеркивались):

Для первого предприятия, когда s4=5, видим, что x4(5)=1, значит, первое предприятие получает 1 и остается s3=s4x4(5)=5–1=4. Находим лучшее размещение средств для второго предприятия (на третьем с конца шаге) при s3=4. Это х3(4)=2, остается s2=s3x3(4)=4–2=2. На втором (с конца) шаге x2(2)=1 и на последнее предприятие (первый с конца шаг) остается s1= s2x2(2)=2–1=1 и x1(1)=1.

Максимум суммарной прибыли равен 24 у.е.