Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические методы и модели в экономике.doc
Скачиваний:
110
Добавлен:
08.03.2016
Размер:
8.1 Mб
Скачать

2.2.6. Двойственная задача линейного программирования.

В 2.2.2 мы рассматривали общую задачу линейного программирования. Рассмотрим теперь другую экономическую задачу на том же предприятии с теми же исходными данными.

Необходимо определить такие цены

(y1  0, y2  0,…, ym  0 ) (2.2.6)

всех ресурсов, чтобы сумма потраченных средств на их приобретение была бы минимальна, т.е.

Z = b1 y1 + b2 y2 +…+ bm ym min. (2.2.7)

С другой стороны, предприятию будет выгодно продать ресурсы в случае, если выручка от их продажи будет не менее той суммы, которую предприятие может получить при изготовлении продукции из этих ресурсов. Т.к., на производство единицы продукции j расходуется a1j единиц ресурса 1, a2j единиц ресурса 2,…, amj единиц ресурса m, то для обеспечения выгодности продажи ресурсов необходимо выполнение следующих неравенств:

a11 y1 + a21 y2 +…+ am1 ymс1,

a12 y1 + a22 y2 +…+ am2 ymс2,

…………………………………. (2.2.8)

a1n y1 + a2n y2 +…+ amn ymсn,

Полученная экономико-математическая модель называется двойственной или сопряженной по отношению к исходной.

Цены ресурсов y1, y2,…, ym получили различные названия: учетные, неявные, теневые. В отличие от «внешних» цен с1, с2 ,…, сn на продукцию, известных, как правило, до начала производства, цены ресурсов y1, y2,…, ym являются внутренними, ибо они определяются непосредственно в результате решения задачи, поэтому их чаще называют объективно обусловленными оценками ресурсов (Л.В.Канторович).

Построим двойственную задачу для примера 2.2.1:

Z = 12 y1 + 18 y2 +15 y3  min. (2.2.9)

2 y1 + 2 y2 + y3  5,

y1 + 3 y2 + 3 y3  6, (2.2.10)

y1  0, y2  0, y3  0.

Из алгебраических соображений легко показать, что FZ, откуда maxF=minZ, если они существуют (основная теорема двойственности).

В нашем примере 2.2.1 maxF = minZ = 40.5, и объективно обусловленные оценки y1= 0.75, y2 = 1.75, y3 = 0, вычисленные простым счетом в 2.2.5, являются решением двойственной задачи (2.2.9)-(2.2.10).

Действительно, 120.75 + 181.75 + 150 = 40.5.

Из выражения (2.2.9) видно, что если увеличить в условии задачи какое-либо ресурсное ограничение bi на единицу, то Z (и следовательно F) также увеличится ровно на yi.

Однако прямая и двойственная ей задача линейного программирования имеют и экономическое истолкование. Так, в задачах на распределение ограниченных ресурсов в производстве оптимальный план можно получить, либо минимизируя издержки для заданной программы, либо максимизируя выпуск при заданной общей сумме издержек. Двойственными аспектами одной и той же задачи являются распределение ресурсов и оценка их. Если для ресурсов не существует рыночных цен, то необходимо их создать, ввести систему условных или расчетных цен.

Рассмотрим теперь пример 2.2.2 и построим для него двойственную задачу. Напомним, что в этом примере из сена и концентратов необходимо составить суточный рацион питания, калорийность которого 20 кормовых единиц, содержание белка 2000 гр., а кальция 100 грамм. Цена сена 1.5, а концентратов 2.5 усл.единиц за 1 кг. Пусть y1, y2, y3 - наша оценка (за единицу) полезности каждого из этих показателей. Тогда общая (условная) оценка рациона питания:

Z = 20 y1 + 2000 y2 +100 y3.

Мы будем стремиться максимизировать Z. Если 1 кг. сена содержит 0.5 кормовых единиц, 50г белка и 10 г кальция, то оценка его питательного содержания, т.е. 0.5 y1 + 50 y2 + 10 y3 , не может превышать его рыночной цены (1.5). Аналогично этому для концентратов оценка питательных веществ, равная y1 + 200y2 + 2y3, не может превышать 2.5. Следовательно, двойственную задачу можно сформулировать таким образом:

Найти такие оценки питательных веществ, чтобы

Z = 20 y1 + 2000 y2 +100 y3  mах (2.2.11)

при условии

0.5 y1 + 50 y2 + 10 y3  1.5,

y1 + 200 y2 + 2 y3  2.5, (2.2.12)

y1  0, y2  0, y3  0.

Мы получили двойственную задачу к примеру 2.2.2, в котором требовалось найти минимальную стоимость входящих в рацион продуктов питания при заданных рыночных ценах на эти продукты и при соблюдении ограничений в отношении потребности в питательных веществах. После введения условных оценок показателей питательности возникает двойственная задача (2.2.11) – (2.2.12), где требуется максимизировать условную оценку рациона питания при соблюдении ограничений, согласно которым расходы в расчете за единицу продукта не могут превышать его заданной рыночной цены. Цель первой, прямой задачи заключается в том, чтобы закупаемые продукты были, возможно, более дешевыми, удовлетворяя вместе с тем требованиям в отношении питательной ценности, а цель сопряженной двойственной задачи – в том, чтобы при заданных рыночных ценах на продукты получить рацион наиболее высокопитательный.

Имея краткую запись общей задачи линейного программирования в виде:

F =  max

при ограничениях:

bi (i=1,2,…, m),

xj  0 (j=1,2,…n).

можно так же кратко записать двойственную к ней задачу:

m

Z = biyi  min

i=1

при ограничениях:

m

aijyi  cj (j=1,2,…, n),

i=1

yi  0 (i=1,2,…, m).

Пример 2.2.3. Дана исходная задача:

максимизировать линейную функцию F = 2х1 + 3х2  max

при ограничениях x1 + 3x2  18,

2x1 + x2  16,

x2  5,

3x1  21,

x1  0, x2  0.

Требуется составить задачу, двойственную к исходной задаче.

Решение.

Сформулируем двойственную задачу:

Z = 18 y1 + 16y2 + 5 y3 + 21 y4  min

при ограничениях y1 + 2y2 + 3y4  2,

3y1 + y2 + y3  3,

yi  0, i = 1, 4.