Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Basic+Clinical+Radiobiology(2).pdf
Скачиваний:
121
Добавлен:
27.03.2015
Размер:
5.08 Mб
Скачать

Index

Abbreviations: RT, radiotherapy. Page numbers in bold refer to the glossary.

abortive cell division

153–4,

angiotensin pathway interventions

ATM (ataxia telangiectasia

 

155, 353

 

 

 

309–10

 

 

 

 

mutated protein)

14–16

ABX-EGF (panitumumab)

294

anti-angiogenic drugs

242, 243,

cell cycle checkpoint activation

accelerated RT

140–4, 353

 

 

294–5

 

 

 

 

and

18, 19

 

clinical evaluation

140–4

antibiotic (anticancer) with RT

drugs targeting 317–18, 320

hyperfractionation compared

therapeutic interactions

252

programmed cell death and 17

with 144

 

 

toxicity

254

 

 

 

ATR (AT-related kinase)

16

normal-tissue damage

 

anti-inflammatory agents

308

cell cycle checkpoint activation

early

174

 

 

antimetabolite with RT

 

 

and

18, 19

 

late

145

 

 

 

therapeutic interactions

252

ATR-interacting protein

 

see also ARCON; continuous

toxicity

254

 

 

 

(ATRIP)

16

 

hyperfractionated

 

antioxidants

304–5, 309

 

ATRIP

16

 

 

 

 

accelerated radiotherapy

APEX1 inhibition

317

 

 

autophagy

29, 30–1, 353

 

acetylsalicylic acid 308

 

apoptosis

17, 28–30, 319, 353

autophosphorylation of

 

adaptation to hypoxia

225

 

drug-induced

319, 321

 

DNA-dependent protein

adrenal glands

181

 

 

cytotoxic

251–2, 252

 

kinase catalytic

 

adverse events see side-effects

mitotic catastrophe and

37

subunit

23

 

AE-941 295

 

 

 

AQ4N

241

 

 

 

 

Avastin

295

 

 

 

age and second cancer risk

339

ARCON (Accelerated

 

 

 

 

 

 

 

 

AKT (protein kinase B) inhibitors

 

Radiotherapy to overcome

banoxantrone

 

241

 

295–6, 318

 

 

 

tumour cell proliferation

BARD1

22

 

 

 

 

alkylating agent with RT

 

 

with CarbOgen and

 

base excision repair (BER)

12,

therapeutic interactions

252

 

Nicotinamide)

238–9,

24–5, 353

 

toxicity

254

 

 

 

353

 

 

 

 

 

inhibition

 

317, 320

 

/ ratio

9, 50, 63, 106–8, 108,

Artemis protein

23

 

 

BAX 30

 

 

 

 

353

 

 

 

aspirin (acetylsalicylic

 

 

Beclin 1

31

 

 

 

 

organ/tissue-specific

107,

 

acid)

308

 

 

bevacizumab

295

 

179–81

 

 

astrocytoma, PET-aided treatment

BIBX1382BS

 

307

 

tumours with low values

 

 

planning

277

 

 

biliary tract

 

180

 

132–3

 

 

 

asymmetrical stem cell division

biologic effect estimates

 

-particles

60

 

 

 

353

 

 

 

 

 

adjusting for dose-time

 

amifostine

304

 

 

loss

152–3, 154, 173–4,

 

fractionation 120–1

anal carcinoma,

 

 

 

353

 

 

 

 

 

uncertainty

 

131–2

 

chemoradiotherapy

247,

AT-related kinase see ATR

 

biological phase of radiation

248

 

 

 

ataxia telangiectasia mutated

effects

 

4, 5

 

angiogenesis

209

 

 

 

protein see ATM

 

 

biological response modifiers

inhibitors

242, 243, 294–5

ATF6

231

 

 

 

 

 

301–15

 

 

362

Index

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

biologically effective dose

 

BRCA genes

22, 321

 

 

function, early changes in

171

 

(extrapolated total dose)

breast, side-effects

 

180–1

 

growth assays

46

 

 

 

 

114–16, 120, 353, 355

in re-irradiated patients

268

loss/depletion

 

 

 

 

biomarker, hypoxia-inducible

breast cancer

344–6

 

 

in normal tissues

171–4,

 

factor as

 

227–9

 

 

/ ratio for subclinical disease

174

 

 

 

 

bioreductive drugs

239–41, 323

133

 

 

 

 

 

in tumours, calculation

83,

bladder

180, 185

 

 

 

 

chemoradiotherapy

249

 

354

 

 

 

 

/ ratio

107, 180

 

 

re-irradiation tolerance

268

survival see survival

 

 

 

re-irradiation responses

 

role of RT

1–2

 

 

 

 

cell cycle

 

 

 

 

 

early

262

 

 

 

 

 

second cancer risk after

 

cell killing variations through

 

late

264

 

 

 

 

 

treatment of

344–6

94–5

 

 

 

 

bladder cancer

 

 

 

 

 

bronchial cancer, brachytherapy

checkpoint activation

17–20,

post-treatment risk of

 

 

125

 

 

 

 

 

354

 

 

 

 

 

in cervical cancer

343

BW12C

303

 

 

 

 

 

accelerated senescence and

 

in prostate cancer

344

bystander-induced cell death 39,

32

 

 

 

 

role of RT

3

 

 

 

 

116–17

 

 

 

 

drugs interfering with

319,

BLM

21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

321

 

 

 

 

blood transfusion

238, 241

C225 see cetuximab

 

 

 

mitotic catastrophe and

32

blood vessels see vasculature

CA4DP

243, 244

 

 

 

 

chemotherapy-associated

 

bone

179, 188

 

 

 

 

 

caffeine

318, 319

 

 

 

 

synchronization

 

251, 252

bone marrow

181

 

 

 

cancer see tumours

 

 

 

resensitization

72

 

 

 

dose-rate effect

162

 

 

capillaries

179

 

 

 

 

time 80–2, 354

 

 

 

re-irradiation tolerance

261–2

captopril

310

 

 

 

 

cell death and killing (radiation-

repopulation by

 

 

 

carbogen

234, 241

 

 

 

induced)

5, 27–40, 354

 

haematopoietic stem cells

see also ARCON

 

 

 

 

brachytherapy, variations

 

 

195

 

 

 

 

 

 

carbon ion therapy

75–6, 336

around implanted

 

 

stem/progenitor cells

 

 

carcinogens and second cancers

radioactive source

165

 

mobilization

310–11

340

 

 

 

 

 

definitions 27

 

 

 

 

transplantation

311,

 

carcinomas

 

 

 

 

 

independent, in

 

 

 

 

311–12

 

 

 

 

 

chemoradiotherapy

247

 

chemoradiotherapy

249

transplantation

310

 

 

differentiation status

41

 

mechanisms

28–33

 

 

 

bowel/intestine

107, 115,

 

see also specific tissues/organs

programmed see programmed

 

179–80, 183–4

 

 

cardiomyopathy

188

 

 

cell death

 

 

 

 

brachial plexopathy

187

 

caries 183

 

 

 

 

 

target theory of killing

47–9,

brachytherapy (incl. intracavitary

cartilage

179, 188

 

 

 

359

 

 

 

 

 

therapy)

123, 125,

caspases

28, 29, 30

 

 

 

variation through cell cycle/

 

164–7, 353

 

 

 

 

cataracts

181, 188

 

 

 

cell-cycle delay/

 

 

 

cervical cancer, re-treatment

CB1954

240

 

 

 

 

 

redistribution

94–5

 

 

using, tolerance

268

CDKs (cyclin-dependent kinases)

when and why of 33–9

 

endobronchial cancer

125

18–19, 354

 

 

 

 

cell division (normal tissue stem

pulsed

166–7

 

 

 

 

celecoxib

308

 

 

 

 

cells post-irradiation)

 

Bragg peak

75, 76, 332, 353–4

cell(s)

 

 

 

 

 

 

152–5, 172

 

 

 

brain (incl. cerebrum)

181, 186

chemoradiotherapy

 

 

abortive 153–4, 155, 353

 

tumours

 

 

 

 

 

 

interactions on

249–50

acceleration of

153, 154–5

 

chemoradiotherapy

246,

counting, precise

46

 

 

asymmetrical see asymmetrical

 

247

 

 

 

 

 

 

cultured, molecular-targeted

stem cell division

 

 

 

PET-aided treatment

 

drug evaluation in

 

symmetrical see symmetrical

 

planning

276–7

 

289–90

 

 

 

 

cell division

 

 

 

 

see also skull base tumours

detoxification

304–5

 

see also proliferation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index

363

 

 

 

 

central nervous system see brain;

paediatric, second cancer risk

anti-VEGF monoclonal

 

spinal cord

 

 

 

340

 

 

 

 

antibodies

295

 

cerebrum see brain

 

 

 

see also drugs

 

 

 

chemoradiotherapy

247

 

cervical cancer/carcinoma

children

 

 

 

 

 

dose per fraction

128

 

chemoradiotherapy

246,

ion beam RT 336

 

 

lymph node staging,

 

 

246–7

 

 

 

second cancers after treatment

PET/CT/MRI in 273

therapeutic ratio

255

of

340, 347–8

 

 

PET-aided treatment planning

lymph node staging,

 

 

chlorambucil N-oxide

241

281

 

 

 

 

PET/CT/MRI in

273

chondrosarcoma, skull base

post-treatment risk of

 

PET-aided treatment planning

heavy ion RT

336

 

 

in cervical cancer

343

 

281–2

 

 

 

proton therapy

335

 

 

in prostate cancer

344

re-irradiation tolerance

268

chordoma, skull base

 

 

re-irradiation tolerance

268

role of RT 2

 

 

 

heavy ion RT

336

 

 

combined chemotherapy and

second cancers after treatment

proton therapy

335

 

 

radiotherapy see

 

of

342, 342–3

 

 

chromatin

 

354

 

 

 

chemoradiotherapy

 

cetuximab (C225; Erbitux)

drugs affecting structure

296,

Common Terminology Criteria

colorectal cancer

294

 

318–19

 

 

 

for Adverse Events v3

head and neck cancer

293–4

chromosome aberrations and

177

 

 

 

 

charged particles (ions)

 

68, 69,

instability

354

 

 

comparative genomic

 

 

74–6, 332–8

 

 

chemotherapy-related

250–1,

hybridization

324–5,

dose specification and planning

252

 

 

 

 

354

 

 

 

 

334–5

 

 

 

pre-mitotic cell death and

complications see side-effects

physical/biological basis for

35–7

 

 

 

 

computed tomography

 

 

therapy using

74–5,

cisplatin

 

 

 

 

 

dual PET and see positron

332–4

 

 

 

in head and neck squamous

emission tomography/CT

CHART see continuous

 

 

cell carcinoma, with RT

for lymph node staging, PET

hyperfractionated

 

247

 

 

 

 

compared with

272–3

accelerated radiotherapy

radiosensitizing effects

316

conjunctiva

181

 

 

 

checkpoint activation, cell cycle

clinical tumour volume (CTV)

connective tissue 179

 

 

see cell cycle

 

 

191, 192

 

 

 

continuous hyperfractionated

chemical phase of radiation effects

PET-aided treatment planning

accelerated radiotherapy

4, 5

 

 

 

 

of oesophageal cancer

(CHART)

141–2, 145,

chemical radiosensitizers

234–7

280

 

 

 

 

146, 354

 

 

 

chemoradiotherapy (combined

clonogenic cells (colony-forming

molecular-targeted drugs

293

chemotherapy and RT)

cells)

41, 354

 

 

side-effects

145, 149–50

 

8, 246–58, 287, 346–7

assays

6, 42–3

 

 

 

continuous low-dose-rate

 

clinical overview

246–8

survival

 

84–5, 354

 

 

(CLDR) irradiation

158,

interactions in

248–53

calculation and assays

 

162–4

 

 

 

 

spatial cooperation

248–9,

44–6, 85, 90

 

 

pulsed dose rate brachytherapy

358

 

 

 

 

colon (large intestine)

180

vs 166, 167

 

 

LQ model and

133

 

 

/ ratio

107, 180

 

 

continuous radiation

123–5

molecular-targeted drugs in

recovery from damage

115

incomplete repair in

112

287–300

 

 

 

colony-forming cells see

 

 

copper-ATSM PET

282

 

proton beam therapy

337

clonogenic cells

 

 

corticosteroids (glucocorticoids)

second cancers risk

346–7

colony stimulating factors (CSFs)

308

 

 

 

 

therapeutic ratio

255

 

305–6, 306, 310–11

 

counting, cell, precise

46

 

toxicity

253–5

 

 

 

colorectal cancer/carcinoma

Courtenay–Mills assay

44

 

chemotherapy (cytotoxic drugs)

anti-EGFR monoclonal

 

cranial base tumours see skull base

hypoxia and resistance to 215

antibodies

294

 

 

tumours

 

 

 

364 Index

CSFs (colony stimulating factors)

DNA damage

11–26, 47

dependency of relative

305–6, 306, 310–11

 

assays 46, 211

 

 

 

biological effectiveness on

CTCAE v3

177

 

 

 

checkpoints in cell cycle see cell

71–2

 

 

cure see local tumour control

 

cycle

 

 

 

 

dose recovered per day due to

cyclin-dependent kinases

18–19,

chemotherapy enhancing

proliferation (Dprolif)

354

 

 

 

 

250–1, 252

 

 

 

125–6

 

 

cyclo-oxygenase inhibitors

 

double-strand see double-

equivalent, in 2-Gy fractions see

see non-steroidal

 

 

strand breaks

 

 

equivalent dose in 2-Gy

anti-inflammatory drugs

hypoxia and reoxygenation

fractions

 

cytokines

171, 327

 

 

 

affecting

226

 

equivalent uniform (EUD)

cytotoxic drug therapy see

 

lethal–potentially lethal (LPL)

194, 355

 

 

chemoradiotherapy;

 

model of

50–1, 160, 163

extrapolated total/biologically

chemotherapy

 

 

 

repair see DNA repair

 

effective

114–16, 120,

cytotoxins, hypoxic cell

239–41

responses to (DDRs)

14–20,

353, 355

 

 

 

 

 

 

354

 

 

 

 

 

in ion beam therapy,

D0 concept

44, 47–8, 49, 50, 354

cell death

17, 27, 32, 33,

specification

334–6

DAHANCA see Danish Head and

34, 35

 

 

 

 

isoeffective, in 2-Gy fractions,

Neck Cancer Group

 

sensors

14–16, 358

 

converting dose into 123

damage, DNA see DNA

 

 

signalling to effectors

16–17

per fraction

127, 127–9

Danish Head and Neck Cancer

single-strand see single-strand

changing/modifying 121–3,

Group (DAHANCA)

 

breaks

 

 

 

 

136–8

 

 

126, 130, 142–3

 

 

sublethal see sublethal damage

in colorectal cancer patient

blood transfusion

238

 

DNA-dependent protein kinase

128

 

 

molecular-targeted drugs

293

catalytic subunit

 

errors and their correction

radiosensitizing drugs

235,

(DNA-PKcs)

16, 23

127–9

 

 

236

 

 

 

 

inhibitors

317

 

 

 

see also hyperfractionation;

death see cell death

 

 

 

DNA polymerase beta inhibition

hypofractionation

deblurring, PET images

274

317

 

 

 

 

 

in spinal cord irradiation

delayed-plating experiments

94

DNA repair

12, 20–5

 

lateral dose distribution

dentition

183

 

 

 

base excision see base excision

200

 

 

3’-deoxy-3’-fluorothymidine see

repair

 

 

 

 

surrounding the high-dose

fluorothymidine

 

 

double-strand

 

 

 

volume

199–200

detoxification, cellular

304–5

see double-strand breaks

tolerance see tolerance

diffuse gliomatosis, PET-aided

drugs inhibiting

317, 320

tumour control (TCD50), assay

treatment planning

277

cytotoxic

250–1, 252

86–90, 359

 

diffusion-limited (chronic) hypoxia

EGFR and

9

 

 

 

see also nominal standard dose;

210, 218, 222, 354

 

 

hypoxia and reoxygenation

time–dose–fractionation

clinical procedures operating

affecting

116

 

dose fractionation see

 

against 238

 

 

 

incomplete see incomplete

fractionation

 

division see cell division

 

 

repair

 

 

 

 

dose-modifying factor (DMF)

DNA

 

 

 

 

saturation model

51–2, 358

354

 

 

methylation, measurement

single-strand see single-strand

calculation

89, 92, 249–50

324–5

 

 

 

breaks

 

 

 

 

dose-rate effect

94, 158–68, 354

structure

13

 

 

 

systems of

12

 

 

 

cell survival and 159–60

synthesis, hypoxia and

 

 

doranidazole

236

 

 

inverse 164

 

 

reoxygenation affecting

dose

 

 

 

 

 

mechanisms

158–9

226

 

 

 

 

converting to response rates

in normal tissues

160–2

transcription, hypoxia affecting

from change in

130

dose-recovery factor

160

227–9

 

 

 

delivery, errors

127–9

dose-reduction factor

354–5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index

365

 

 

 

 

 

 

 

 

 

 

 

dose–response curves

6–7

ear

181, 188

 

 

 

 

 

for continuous irradiation

 

position

 

59–60

 

 

edge-preserving filtering (PET)

112

 

 

 

 

shapes

57–9

 

 

 

 

275

 

 

 

 

 

equivalent uniform dose (EUD)

steepness

 

 

 

 

EF3 (3,3,3-trifluoropropylamine)

194, 355

 

 

 

clinical estimates

61–3

 

282

 

 

 

 

 

Erbitux see cetuximab

 

 

modifying

64–5

 

effective dose (ED50)

43

 

ERCC1

25

 

 

 

 

quantifying

60–1

 

biologically

 

114–16, 120, 353

erlotinib

294

 

 

 

dose–response relationships

effectors in DNA damage

355

errors in dose delivery

127–9

56–67

 

 

 

signalling to

 

16–17

 

 

erythropoietin (EPO)

238

 

methodological problems in

EGFR see epidermal growth factor

essential fatty acids

308

 

estimation from clinical

 

receptor

 

 

 

 

etanidazole

236

 

 

 

data

64

 

 

 

eIFs (translation initiation

 

Ethyol

304

 

 

 

 

dose–survival relationships

47, 59

 

factors)

230, 231

 

European Organisation for

 

dose–volume models and

 

Elkind recovery see recovery from

Cancer Research

 

distribution

194–5

 

sublethal damage

 

(EORTC), head and neck

dose–volume histogram (DVH)

endobronchial cancer,

 

 

cancer

 

 

 

66, 193, 194, 203

 

 

brachytherapy

125

accelerated RT 143, 174

 

second cancer risk reduction

endoplasmic reticulum, hypoxic

early effects of radiation

174

and

349, 350

 

 

stress

231

 

 

 

hyperfractionation

 

137

 

dosimetric aspects of

 

 

endothelial cells

175

 

 

see also Radiation Therapy

 

methodological problems

function inhibitors

243

Oncology Group/EORTC

in estimation of

 

endpoint dilution assay

90

joint classification of

 

dose–response relationships

enhancement ratio (ER)

92

side-effects

 

 

 

from clinical data

64

oxygen see oxygen

 

 

 

European Organisation for

 

see also microdosimetry

 

sensitizer (SER)

235, 236, 358

Cancer Research/NCIC

dosimetric hot spots

130

 

EO9

240

 

 

 

 

 

joint study of glioblastoma

double-strand breaks (DSBs) 13,

EORTC see European

 

 

chemoradiotherapy

246

47

 

 

 

 

 

 

Organisation for Cancer

excision assay

87, 90

 

 

repair

12, 20–3

 

 

 

Research; Radiation

excision repair

 

 

 

EGFR and

9

 

 

 

Therapy Oncology

 

base (BER)

12, 24–5

 

targeting 317

 

 

 

Group/EORTC joint

nucleotide (NER)

12, 25

 

sensors

 

15–16

 

 

 

classification of

 

 

experimental assays

 

 

 

single and, link between

24

 

side-effects

 

 

 

molecular-targeted drugs

 

double trouble phenomenon

epidermal (epithelial) growth

289–90

 

 

 

130, 131, 355

 

 

 

factor receptor (EGFR)

radiation effects on tumours

doubling time

355

 

 

 

9, 96, 171, 289, 307

 

85–92

 

 

 

 

potential

82–3, 323, 357

inhibitors

290, 291–4, 297,

exponential growth

79–80, 355

volume

 

78–9, 359

 

 

307

 

 

 

 

 

expression microarrays

325–6,

drugs

 

 

 

 

 

 

clinical data 292–4

 

357

 

 

 

 

bioreductive

239–41, 323

epidermis, re-irradiation tolerance

extrapolated total dose

 

 

cytotoxic see

 

 

 

 

260

 

 

 

 

 

(biologically effective dose)

chemoradiotherapy;

epithelial growth factor receptor

114–16, 120, 353, 355

 

chemotherapy

 

 

 

see epidermal growth

extrapolation number

234, 355

modulation of radiation effects

 

factor receptor

 

 

eye 181, 188

 

 

 

on normal tissues

301–15

Eppendorf histograph

212, 213,

 

 

 

 

 

 

radiosensitizing see

 

 

 

323

 

 

 

 

 

F-Miso

282

 

 

 

 

radiosensitivity

 

equivalent dose in 2-Gy fractions

FANC (Fanconi genes)

22

 

targeted see molecular targeted

 

(EQD2)

109, 121, 122,

farnesyltransferase inhibitors

 

agents

 

 

 

 

126, 355

 

 

 

 

296

 

 

 

 

366 Index

FAS ligand

28

 

changing time-interval

glioblastoma, chemoradiotherapy

fatty acids, essential

308

between dose fractions

246, 247

 

 

FGF (fibroblast growth factor)

123

 

 

 

glioblastoma multiforme, proton

306

 

 

 

free radicals

5, 208–9, 355

therapy

335

 

fibroblast(s)

175–6

 

scavenging

304–5

 

glioma, PET-aided treatment

fibroblast growth factor (FGF)

function

 

 

 

planning

277

306

 

 

 

cell, early changes in

171

glucocorticoids

308

 

fibrosis, subcutaneous see

tissue, assays 6

 

 

glutathione peroxidase

subcutaneous fibrosis

functional (molecular) imaging

stimulation

305

field-size effect

355

 

8, 166, 271–86, 355, 357

GM-CSF (granulocyte

filtering, PET images

274, 275

functional subunits (FSUs)

macrophage colony

flow cytometry

81–2, 355

193–4, 355

 

 

stimulating factor) 305,

FLT see fluorothymidine

repopulation and arrangement

306

 

 

fluorescence-activated cell sorter

of 195

 

 

Gompertz equation

79

46

 

 

 

tolerance dose and

192–3

gossypol

319

 

 

fluorodeoxyglucose (FDG) see

 

 

 

 

 

gradient-based PET image

positron emission

G1/S checkpoint (and its

segmentation

275–6

tomography

 

activation)

18, 20

grading of normal tissue effects

fluoromisonidazole

282

inhibition

319

 

 

177

 

 

fluorothymidine (FLT) in PET

transient, leading to accelerated

granulocyte colony stimulating

282

 

 

 

senescence

32

 

factor (G-CSF) 305, 306,

tumour proliferation estimates

G2 checkpoints

 

 

310–11

 

 

using

 

82

 

early

19, 20

 

 

granulocyte macrophage colony

foci, ionizing radiation-induced

inhibition

319

 

 

stimulating factor

(IRIF)

14, 356

late

19, 20

 

 

 

(GM-CSF) 305, 306

four-dimensional distribution of

mitotic catastrophe and 32

Gray (Gy)

335, 355

 

radiation dose

282–3

-rays

68, 69

 

 

Gray equivalents

355–6

fraction

 

 

 

-value

60

 

 

 

gross target volume

191, 192

dose per see dose

clinical importance

61–3, 64

PET-aided treatment

multiple, per day, incomplete

gaps in treatment

 

planning

repair in 124

planned/intentional

144

head and neck squamous cell

fractionation 5, 9, 102–19,

unplanned/unintentional 127

carcinoma 277, 278

135–48, 162–4

 

gastrointestinal tract, volume

lung cancer (non-small cell)

biological effect estimates and

effects 201–3

278–80

 

adjustment for dose–time

see also specific regions

oesophageal cancer

280–1

fractionation

120–1

G-CSF (granulocyte colony

gross tissue effects, scoring

6

conventional 135–6

stimulating factor) 305,

gross tumour volume 191, 192

modified 135–48

 

306, 310–11

growth

 

 

late increased normal-tissue

gefitinib 294

delay

356

 

damage after

145

genes

assay of delayed regrowth

scheduling considerations

in cell death control 28–32

87, 91–2

 

145–6

 

and their expression, methods

net

91

 

see also hyperfractionation;

of looking at 9, 324–6

specific

91

 

hypofractionation

genetic instability 355

tumour

78–83

reoxygenation and

214–15

hypoxia and 226

exponential

79–80, 355

sensitivity of normal tissues

genetic predisposition to cancer

measuring

78

and tumours

122, 355

340

time (TGT)

91

sparing effect

94

 

genome-wide studies/assays 9,

see also regrowth

time factors

138–40

324–6

tumour cell, assays 46

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index

367

 

 

 

 

 

 

 

 

growth factors

305–8

 

 

normal-tissue damage after

hyperfractionation

108–9,

 

endogenous, targeting

 

modified fractionation

136–7, 356

 

 

 

 

signalling

307–8

 

150, 174

 

 

 

 

accelerated RT vs

144

 

 

exogenous, therapeutic use

late

145

 

 

 

 

late normal-tissue damage

145

305–7

 

 

 

 

 

PET-aided treatment planning

see also continuous

 

 

growth fraction 80–2, 356

 

277–8

 

 

 

 

hyperfractionated

 

 

 

 

 

 

 

 

re-irradiation tolerance

 

266–8

accelerated radiotherapy

H2AX phosphorylation see histone

role of RT 2–3

 

 

 

hyperradiosensitivity (HRS),

 

H2AX phosphorylation

heart 179, 187–8

 

 

 

 

low-dose

53–4, 164

 

haematopoietic growth factors

recovery from damage

 

115

hyperthermia

 

356

 

 

 

305–6, 306

 

 

 

 

heavy particles/ion therapy

68,

hypofractionation

108–9, 137–8,

haematopoietic stem cells, bone

75–6, 332, 334, 335, 336

356

 

 

 

 

 

 

marrow repopulation by

helicases

21

 

 

 

 

late normal-tissue damage

145

195

 

 

 

 

 

helium ion beams

75–6

 

 

hypoxia 9, 209–15, 217–45,

 

haemoglobin

 

 

 

 

 

hepatic irradiation see liver

 

322–3, 356

 

 

 

 

concentrations

 

 

 

 

high-linear energy transfer

 

acute/perfusion-limited see

 

pretreatment

212

 

 

(high-LET) 39, 69,

perfusion-limited hypoxia

therapeutic raising

237–8

332–4

 

 

 

 

adaptation to

 

225

 

 

oxygen saturation,

 

 

 

biological basis and

 

 

 

chronic/diffusion-limited see

measurement

211

 

characteristics

72–3,

diffusion-limited hypoxia

hair follicles

178, 179

 

 

332–4

 

 

 

 

experimental animals

210–11

Hayflick limit

31

 

 

 

 

relative biological effectiveness

heterogeneity

 

218–24

 

 

head and neck cancer

 

 

 

70, 333

 

 

 

 

interpatient

223–4

 

 

accelerated RT

141–2, 142–3,

high-oxygen gas breathing

234

in severity

218–21

 

 

144

 

 

 

 

 

histone deacetylase inhibitors

in space

221–2

 

 

chemoradiotherapy

 

246–7,

296, 318–19

 

 

 

in time

222–3

 

 

 

247, 250

 

 

 

 

histone H2AX phosphorylation

high-LET and

72

 

 

converting from change in dose

14–16

 

 

 

 

human tumours

211–12

 

to response rate

130

assays

46

 

 

 

 

malignancy influenced by

 

correcting for overall treatment

Hodgkin’s disease,

 

 

 

 

225–6

 

 

 

 

 

 

time

126

 

 

 

 

chemoradiotherapy

249

malignant phenotype and

 

dose recovered per day due to

second cancer risk

346–7

224–5

 

 

 

 

 

 

proliferation

126

 

homologous recombination (HR)

in normal tissues, systemic and

fractionation sensitivity

122

12, 20–2, 356

 

 

 

local induction of

303–4

hyperfractionation

137, 144

choice between

 

 

 

 

PET tracers

282

 

 

 

CHART

141–2

 

 

 

non-homologous

 

 

response pathways

226–31

hypoxia-related therapeutic

end-joining and

23–4

therapeutic approaches to

 

approaches

242

 

as drug target

320

 

 

 

212, 233–45

 

 

 

radiosensitizing drugs

235,

hot spots, dosimetric

130

 

assessment of tumour

 

236

 

 

 

 

 

H-R3 (monoclonal antibody),

hypoxia

322–3

 

 

raising haemoglobin levels

head and neck cancer

drugs increasing

 

 

during radiotherapy

238

294

 

 

 

 

radiosensitivity of hypoxic

incomplete repair in

145

HuMax-EGFr (zalutumumab)

cells

234–7, 241, 319, 321

with multiple fractions per

294

 

 

 

 

transient

222–3, 359

 

 

day 124

 

 

 

 

hybridization, comparative

 

hypoxia-inducible factor

227–9

lymph node staging,

 

 

genomic

324–5, 354

 

 

 

 

 

 

 

PET/CT/MRI in

272–3

7-hydroxystaurosporine

319

ice chips, chewing

304

 

 

molecular-targeted drugs

 

hyperbaric oxygen therapy (HBO)

IGF-1 (insulin-like growth

 

292–3

 

 

 

 

 

233–4, 241, 356

 

 

 

factor-1)

306

 

 

368 Index

imaging, functional/molecular

foci induced by (IRIF)

14, 356

after childhood treatment

8, 166, 271–86, 355, 357

IRE-1 231

 

 

340, 347, 348

IMPORT High trial 345

irradiated volume (IR)

191, 192

life-threatening (grade 4) effects

in vitro assays

 

isoeffect curve/isoeffect

 

 

177

in vitro colony assays 44, 90

relationships 6–7, 94,

ligase 1

21

short-term 45–6

102, 104, 162–4, 356

ligase 3

25

incomplete repair

109–12, 119,

alternative formulae

114–16

light particles in RT 68

356

 

LQ model and 106

 

limiting-dilution assay 45

clinical impact

145

isoeffective dose in 2-Gy fractions

linear energy transfer (LET) 39,

in multiple fractions per day

converting dose into

123

47, 68–77, 357

 

 

124

 

 

 

 

for subcutaneous fibrosis 124,

biological basis and

 

 

increased radioresistance region

131

 

 

 

 

characteristics

72–3, 104,

(IRR)

53–4

 

 

 

 

 

 

 

332–4

 

 

 

 

 

individual patients

321–8

 

JBT3200

309

 

 

 

biological effects dependent

individualized treatment

 

jejunum

 

 

 

 

 

upon

69–71

 

 

321–8

 

 

 

 

/ ratio

107

 

 

 

linear–quadratic–cubic model

variability, oxygenation of

 

recovery from damage

115

(LQC)

52–3

 

 

tumour

 

223–4

 

 

 

 

 

 

 

linear–quadratic model (LQ)

variations, dose–response

65

keratinocyte growth factor (KGF)

49–50, 51, 59, 103–8,

induced repair (IndRep) model

306, 306–7

 

 

 

120–34, 357

 

 

 

54

 

 

 

 

KGF (keratinocyte growth factor)

in clinical practice

120–34

infliximab 307

 

 

 

306, 306–7

 

 

 

current issues

132–4

initiation factors (IFs), translation

Ki67 labelling

81

 

 

 

detailed aspects

105–8

230, 231

 

 

 

kidney

180, 184–5, 200–1

 

incomplete repair and

110

inspired gas, raising oxygen

 

/ ratio

107, 180

 

 

limited applicability

116

content of

233–4

 

recovery from damage

115

modifications/alternative

insulin-like growth factor-1

 

re-irradiation tolerance

264

models

54, 116

 

(IGF-1)

 

306

 

volume effects

200–1

 

power-law models vs

 

103–4

integrin activity inhibitors

243,

killing see cell death and killing

time factor

112–14

 

 

308

 

 

 

 

kinases see specific kinases

 

lip mucosa, recovery from damage

intensity-modulated radiotherapy

kinetics, cell cycle, determination

115

 

 

 

 

 

(IMRT)

 

121, 138, 158,

80–2

 

 

 

 

live cell recognition system,

167, 356

 

 

 

Ku70-Ku-80 complex

16, 22, 23

microscopic

46

 

dose rate and

167

 

 

 

 

 

 

 

liver 180, 183, 201

 

 

 

PET tracers

282

 

 

lag phase of repopulation

152,

volume effects

201

 

 

interpatient variability

 

153, 154

 

 

 

local induction of hypoxia in

see individual patients

large intestine see colon; colorectal

normal tissues

304

interphase death

33–4, 42, 356

cancer

 

 

 

 

local tumour control

 

 

 

intestine/bowel

 

107, 115,

 

larynx

180

 

 

 

 

( cure)

5, 83–4, 85–90,

179–80, 183–4

 

lens cataracts

181, 188

 

92–7, 357

 

 

 

 

intracavitary therapy

 

LENT/SOMA system

177, 178

factors influencing

92–7

see brachytherapy

 

lethal damage, potentially (PLD),

probability ( cure probability;

inverse dose-rate effect 164

recovery from

94, 357–8

TCP)

5, 85–90, 359

ion beams see charged particles

lethal–potentially lethal (LPL)

tumour volume and

96–7

ionization tracks,

 

 

 

damage model

50–1,

loco-regional recurrence,

 

microdosimetric

 

160, 163

 

 

 

re-irradiation see

 

calculations

68–9

 

leukaemia

 

 

 

 

re-irradiation

 

 

ionizing radiation

 

 

chemoradiotherapy

249

logistic dose–response model

DNA damage by

11–12

 

as second cancer

346, 347

57, 59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index

369

 

 

 

 

 

low-dose hyperradiosensitivity

mean inactivation dose

357

molecular targeted agents

 

53–4, 164

 

 

 

Medical Research Council (MRC),

 

287–300, 305–8, 316–31,

low-dose-rate irradiation

158

hyperbaric oxygen therapy

 

359

 

 

 

 

 

 

effects of proliferation

163–4

trial

233

 

 

 

 

trials

 

290–1

 

 

 

 

possible radiobiological

 

melanoma, proton therapy

335

tumour specificity

320–1

advantages

 

165–6

meningioma, PET-aided

 

monoclonal antibodies

 

 

low-linear energy transfer

 

treatment planning

277

anti-EGFR

291, 292

 

(Low-LET)

 

47, 69, 72

mesenchymal stem cell

 

 

head and neck cancer

293–4

relative biological effectiveness

transplantation

310

other cancers

 

294

 

70

 

 

 

 

messenger RNA see RNA

 

anti-VEGF

295

 

 

 

lung 180, 184, 195–8

 

metabolic activity, tumour,

 

MRC, hyperbaric oxygen therapy

/ ratio

107, 180

 

measurement

211

 

 

trial

 

233

 

 

 

 

recovery from damage

115

metastases

 

 

 

 

 

 

MRE11

15, 21, 318

 

 

re-irradiation tolerance

 

distant, targeted drugs and 291

MRN

15, 21

 

 

 

 

 

clinical studies

268

 

lymph nodes, imaging methods

as drug target

317–18, 320

experimental studies

263–4

(in staging)

272–3

mTOR

 

230–1, 295

 

 

 

volume effects

195–8

 

methionine (11C-labelled) in

multiple fractions per day,

 

lung cancer

 

 

 

 

PET-aided treatment

 

incomplete repair in

124

accelerated RT

142, 143

planning

277

 

 

multi-target single-hit

 

 

angiogenesis inhibitors

295

methoxyamine

317

 

 

 

inactivations

48, 49,

chemoradiotherapy 247

methylation, DNA

324–5

 

 

357

 

 

 

 

 

 

lymph node staging,

 

microarrays, expression 325–6,

myelopathy

 

186–7

 

 

 

PET/CT/MRI in

273

357

 

 

 

 

 

 

volume effect and

198, 199,

re-irradiation tolerance

268

microdosimetry

68–9

 

 

 

200

 

 

 

 

 

 

role of RT

2

 

 

 

microenvironment, tumour

myocardial damage

188

 

tyrosine kinase inhibitors 294

209–10, 217–32

 

 

 

 

 

 

 

 

 

 

 

see also endobronchial cancer

micronucleus test

 

45–6

 

N-oxides

240–1

 

 

 

 

lung colony assay

45, 90

 

microRNA

326, 357

 

 

National Cancer Institute

 

Lyman–Kutcher–Burman (LKB)

microscopic live cell recognition

 

(Canada)/EORTC joint

model

193, 203

 

system

46

 

 

 

 

study of glioblastoma

Lyman model

65–6, 193

 

mismatch repair (MMR)

12, 25,

 

chemoradiotherapy

246

lymph nodes

 

 

 

 

357

 

 

 

 

 

 

National Cancer Institute (US)

adverse effects on

181

 

misonidazole

 

234–6

 

 

CTCAE v3

177

 

 

 

imaging methods compared in

mitomycin-C

239–40

 

 

terminology on normal tissue

staging of

272–3

 

mitosis (post-irradiation)

42

 

protection

 

302

 

lymphatic system, adverse effects

cell death after

 

34–9, 42

NBS1

15, 16, 318

 

 

 

on 181

 

 

 

cell death before (interphase

NCI see National Cancer

 

lymphoma

 

 

 

 

death)

33–4, 42, 356

 

Institute

 

 

 

 

Hodgkin’s see Hodgkin’s disease

delayed entry

357

 

 

NCIC/EORTC joint study of

role of RT

3

 

 

 

mitotic catastrophe

29, 357

 

glioblastoma

 

 

 

 

 

 

 

 

MMT (tetrazolium)-based cell

 

chemoradiotherapy

246

macrophage activity modulation

growth assays

46

 

necrosis

29, 31, 357

 

 

308–9

 

 

 

 

modified fractionation see

 

tumour

209

 

 

 

 

magnetic resonance imaging

fractionation

 

 

neovasculature see angiogenesis

(MRI) for lymph node

molecular (functional) imaging

Neovastat

295

 

 

 

 

staging, PET compared

8, 166, 271–86, 355, 357

nephropathy, radiation

184–5

with

272–3

 

 

molecular interactions in

 

see also kidney

 

 

 

 

malignant tumours see tumours

chemoradiotherapy

 

nerves, peripheral

181, 187

MDM2 17

 

 

 

 

249–53

 

 

 

 

 

fractionation sensitivity

122

370 Index

nervous system

 

186–7

 

 

experimental observations

 

damage by (incl. oxygen

net growth delay

 

91

 

 

 

 

150–1

 

 

 

 

 

enhancement ratio)

108,

neutrons (in high-LET)

69, 74–5

late/chronic responses

 

207–8, 357

 

 

 

new primaries see second cancers

 

174–8, 356

 

 

 

linear energy transfer and

NF B inhibitors

 

318

 

 

 

repair halftime

124

 

 

108, 207–8

 

 

 

Nijmegen breakage syndrome 15

tolerance see tolerance

 

therapeutic use of effect

nimorazole

236

 

 

 

 

 

see also organs

 

 

 

 

212, 233–4

 

 

 

nitroimidazoles

 

234–7, 240

nuclear factor kappa B inhibitors

importance

207–9

 

 

nitroxides, organic

240–1

 

 

318

 

 

 

 

in normal tissues, modification

NLCQ-1 240

 

 

 

 

 

 

nucleotide excision repair (NER)

 

of normal levels

303–4

nominal standard dose (NSD)

 

12, 25, 357

 

 

 

see also hyperbaric oxygen;

model

103

 

 

 

 

 

 

 

 

 

 

hypoxia; reoxygenation

non-exponential growth

79–80

ocular (eye) effects

181, 188

oxygen-fixation hypothesis

208

non-homologous end-joining

oesophagus

178–83

 

 

 

 

 

 

 

 

 

(NHEJ)

 

12, 22–3, 357

cancer/carcinoma

 

 

 

p53

17, 30

 

 

 

 

 

choice between homologous

chemoradiotherapy

247, 248

hypoxia and

225–6

 

 

recombination and

23–4

lymph node staging,

 

paclitaxel (taxol) and

 

 

non-small cell lung cancer

 

 

PET/CT/MRI in

273

 

reoxygenation

252

 

(NSCLC)

 

 

 

 

 

re-irradiation tolerance

260–1

paediatric cancer see children

accelerated RT

 

142

 

 

volume effects 202

 

 

palifermin

306

 

 

 

angiogenesis inhibitors

 

295

ophthalmological (eye) effects

palliative therapy, single-dose

chemoradiotherapy

247

 

181, 188

 

 

 

 

irradiation of

 

 

lymph node staging,

 

 

optic nerve

181

 

 

 

 

hypofractionation

138

PET/CT/MRI in

273

oral cavity

 

 

 

 

pancreas 180, 184

 

 

 

tyrosine kinase inhibitors

294

cooling with ice chips

304

cancer, EGFR inhibitors

294

non-steroidal anti-inflammatory

mucosal reactions (inc.

 

panitumumab

 

 

 

 

drugs (NSAIDs)

308

 

mucositis)

122, 150,

colorectal cancer

294

 

COX-2-selective

296, 308

 

178–83

 

 

 

head and neck cancer

294

normal tissue architecture

 

 

re-irradiated patients

260–1

parotid gland

183

 

 

 

repopulation by stem cells and

volume effect and

202

volume effects 203–4

 

195

 

 

 

 

 

 

 

organ(s)

 

 

 

 

PARP (poly-(ADP-ribose)

 

tolerance dose and

192–3

architecture affecting tolerance

 

polymerase)

25

 

normal tissue responses

5–6,

 

dose

192–3

 

 

inhibitors

24, 317, 321

 

149–57, 169–90

 

 

specific

 

 

 

 

partial pressure of oxygen (PO2)

/ ratio

107

 

 

 

 

 

side-effects see side-effects

 

estimation

211, 212

adverse see side-effects

 

 

volume effects, clinical and

patient, individual see individual

documentation and assessment

 

experimental studies

 

patients

 

 

 

 

176–8

 

 

 

 

 

 

 

 

195–204

 

 

 

patient-to-patient variability see

dose-rate effect

 

160–2

 

see also functional subunits;

 

individual patients

 

drugs modulating

301–15

 

normal tissue

 

 

PDGF (platelet-derived growth

fractionation sensitivity

122

organic nitroxides

240–1

 

factor)

306

 

 

 

recovery from damage

115

ovary

180

 

 

 

 

pentoxifylline

309, 319

 

repopulation see repopulation

oxidative stress reduction (with

perfusion-limited (acute) hypoxia

retreated patients see

 

 

 

antioxidants)

304–5, 309

 

210, 218, 222, 353, 345

re-irradiation

 

 

 

oxygen

207–32

 

 

 

clinical procedures and

238

time factors

149–57

 

 

assessment of oxygenation

pericarditis

188

 

 

 

clinical observations

 

 

 

status in human tumours

perifosine

319

 

 

 

149–50

 

 

 

 

 

 

 

211

 

 

 

 

peripheral nerves see nerves

 

early responses

170–4, 355

enhancement of radiation

PERK

231

 

 

 

 

 

 

 

 

Index 371

 

 

 

perspiratory glands 178, 179

image acquisition and

proton therapy 335–6

PET see positron emission

reconstruction

273–4

role of RT 2

tomography

image segmentation

274–6

second cancers after treatment

phenotype, malignant, hypoxia

theragnostic 282–3

 

of 342, 343–4

and 224–5

treatment planning

276–82

proteasome inhibitors 318

phosphoinositide-3-kinase/

positron emission

 

 

protein

 

 

 

 

protein kinase B pathway

tomography/CT, dual

synthesis in hypoxia

229–31

inhibitors 295–6, 318

273

 

 

 

unfolded protein response

phosphorylation

 

 

oesophageal cancer

280–1

231

 

 

 

of DNA-dependent protein

postmitotic cell death

34–9, 42

protein kinase B inhibitors

kinase catalytic

 

potential doubling time

82–3,

295–6, 318

 

 

subunit

23

 

 

323, 357

 

 

 

proteolysis inhibitors

 

243

histone H2AX see histone

potentially lethal damage (PLD),

proteomics 326, 358

 

H2AX

 

 

 

recovery from

94, 357–8

protons (in high-LET)

69, 334,

see also specific kinases

 

power-law models

103–4, 193

335–6

 

 

 

photon treatment

332, 333, 334,

LQ vs

103–4

 

 

pulsed brachytherapy

166–7

335, 336

 

 

PR-104

240

 

 

 

 

 

 

 

 

physical phase of radiation effects

pre-irradiation gas breathing time

quinones

239

 

 

 

4–5

 

 

 

 

(PIBT)

234

 

 

 

 

 

 

pimonidazole

236, 323

 

premature senescence

31, 32

RAD50

15, 16, 318

 

 

pituitary glands (child) 181

premitotic (interphase) cell death

RAD51

21

 

 

 

planning (of treatment)

 

33–4, 42, 356

 

Radiation Therapy Oncology

of gaps

144

 

 

 

probit dose–response model 57

Group (RTOG), head and

ion beam therapy

334–6

programmed cell death

358

neck cancer

 

 

PET images for

276–82

type I see apoptosis

 

hyperfractionation

137

planning target volume (PTV)

type II

31

 

 

 

molecular-targeted drugs 293

191, 192

 

 

proliferation (cell)

 

 

Radiation Therapy Oncology

plant derivatives with RT

 

accelerated

353

 

Group (RTOG)/EORTC

therapeutic interactions

252

chemoradiotherapy inhibiting

joint classification of side-

toxicity

254

 

 

252–3

 

 

 

effects

177

 

 

platelet-derived growth factor

dose recovered per day due to

radiosensitivity

13, 358

(PDGF)

306

 

(Dprolif) 125–6

 

cell cycle checkpoints and

platinum-based chemotherapy +

early effects of radiation on

19–20

 

 

 

RT in head and neck

172, 173

 

 

 

drugs increasing

316–31, 321,

squamous cell carcinoma

stimulation of proliferation

358

 

 

 

246–7

 

 

 

309

 

 

 

of hypoxic cells

234–7, 241,

Poisson dose–response model

at low dose-rate

163–4

319, 321

 

 

 

57–9, 85

 

 

measurement

323–4

intrinsic radiosensitivity

interpatient variability

65

see also repopulation

 

321

 

 

 

polarigraphic oxygen electrodes

proliferation marker (Ki67)

of normal tissues see normal

212, 323

 

 

labelling

81

 

tissue responses

 

Pol inhibition

317

 

propyl hydroxylases (PHDs), HIF

see also hyperradiosensitivity

poly-(ADP-ribose) polymerase see

227

 

 

 

radiotherapy

 

 

 

PARP

 

 

 

prostaglandin synthase inhibitors

future development of,

porfiromycin

240

 

 

see non-steroidal

importance of

 

positron emission tomography

anti-inflammatory drugs

radiobiology in

8–10

(PET - predominantly

prostate cancer

 

 

 

role in cancer management

with FDG)

271–86,

/ ratio 132–3

 

1–4

 

 

 

323

 

 

 

 

heavy ion RT

336

 

ways of improving

 

3

372 Index

rapamycin and its derivatives

 

replication protein A

21

 

RTOG see Radiation Therapy

 

 

295–6

 

 

 

 

 

repopulation

358

 

 

 

Oncology Group

 

Ras pathway inhibitors 296

 

in normal tissues (by stem

 

 

 

 

 

 

 

 

Rb (retinoblastoma protein)

18

cells)

149, 151–5, 159,

S-phase

 

 

 

 

 

receptor tyrosine kinase inhibitors

195, 358

 

 

 

checkpoint at

18–19, 20

 

 

see tyrosine kinase

 

mechanisms

151–3

 

fraction of cells in

81–2

 

 

inhibitors

 

 

 

 

regulation

154–5

 

salivary glands

179, 183

 

recovery from sublethal damage

in tumours/by clonogenic

 

volume effects

203–4

 

 

(split-dose/Elkind

 

 

tumours cells

95–6, 159,

sanazol

236–7

 

 

 

 

 

recovery)

93–4, 355, 358

323–4, 358

 

 

saturation model of DNA repair

normal tissues

115

 

 

drugs targeting

321

 

 

51–2, 358

 

 

 

over extended intervals

125–6

measurement

323–4

 

scoring of gross tissue effects

6

see also dose-recovery factor

see also proliferation

 

sebaceous glands

178, 179

 

rectum

180, 202–3

 

 

 

resistance

 

 

 

 

 

second cancers (new primary

 

cancer see colorectal cancer

to chemotherapy, hypoxia and

 

tumours after treatment)

recovery from damage

115

215

 

 

 

 

 

129–30, 259, 339–52

 

volume effects

202–3

 

 

to radiotherapy, hypoxia and

estimating risk

241–6

 

recurrence, loco-regional,

 

208, 210, 211, 215, 218–19

ion beam therapy and risk of

 

re-irradiation

 

 

 

see also increased

 

 

336

 

 

 

 

 

 

see re-irradiation

 

 

radioresistance region

 

re-irradiation with see

 

redistribution phenomenon

95

respiratory tract

 

 

 

 

re-irradiation

 

 

regression (tumour)

5, 84, 358,

lower see lung

 

 

 

reducing risk

 

349–50

 

 

901

 

 

 

 

 

upper

184

 

 

 

 

risk factors/epidemiology

 

assay

87

 

 

 

 

 

response(s)

 

 

 

 

 

339–41, 349

 

 

regrowth (tumour)

5

 

 

to DNA damage see DNA

 

selection of malignant cells,

 

delay assay

87, 91–2

 

 

damage

 

 

 

 

hypoxia-driven

225–6

re-irradiation (for recurrence and

malignant tissue

5–6, 83–92

selenium

305

 

 

 

 

 

second primaries)

 

 

/ ratio

107

 

 

senescence

29, 31–2, 358

 

 

tolerance of normal tissues

determinants and their

 

sense organ effects 181, 188

 

 

129–30

 

 

 

 

 

assessment/measurement

sensitizer enhancement ratio

 

clinical studies

266–8

 

 

322–8

 

 

 

 

 

(SER)

235, 236, 358

 

experimental studies

260–6

normal tissue see normal

 

sensors of DNA damage 14–16,

early effects

260–2

 

 

tissue

 

 

 

 

 

358

 

 

 

 

 

late effects

263–6

 

 

see also dose–response

 

‘shared’ toxicity,

 

 

 

relative biological effectiveness

response curves

6–7

 

 

chemoradiotherapy

249

 

(RBE)

70, 71–2, 358

 

see also dose–response curves

short-term in vitro assays

 

Bragg peak and

76

 

 

response rates, converting from

 

45–6

 

 

 

 

dose dependency

71–2

 

change in dose to 130

side-effects/complications/adverse

high-LET 70, 333

 

 

 

retinoblastoma protein (Rb)

18

 

events/toxic effects of

 

renal effects see kidney

 

 

mRNA (messenger RNA)

 

 

chemoradiotherapy

 

reoxygenation

159, 212–15, 358

in expression microarrays

 

 

253–5

 

 

 

 

chemotherapy effects

252

325–6

 

 

 

 

early

253–4

 

 

 

 

influencing local control

95

in hypoxia

 

 

 

 

late

254–5

 

 

 

 

mechanisms and time scales

synthesis ( transcription)

side-effects/complications/adverse

 

214

 

 

 

 

 

227–9

 

 

 

 

 

events/toxic effects of RT,

repair

 

 

 

 

 

 

translation

230–1

 

 

normal tissue

149–57,

cellular/tissue

93

 

 

 

miRNA (microRNA)

326, 357

 

169–90

 

 

 

 

DNA see DNA repair

 

 

RPA (replication protein A)

21

documentation and assessment

incomplete see incomplete repair

RSU-1069

240

 

 

 

 

176–8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index

373

 

 

 

 

 

 

 

in modified fractionation, late

small intestine/bowel

179

 

repopulation by see

 

 

145

 

 

 

 

 

 

volume effects

202

 

 

repopulation

 

 

 

pathogenesis

169–90

 

 

smoking

340

 

 

 

 

therapeutic use

310–12

 

probability (NTCP)

193, 357

during radiotherapy course

steroids (glucocorticoids)

 

308

models

65–6

 

 

 

 

237–8

 

 

 

 

stomach 179, 183

 

 

 

in retreated patient

 

 

 

SN23862

240

 

 

 

 

subcutaneous fibrosis

178

 

see re-irradiation

 

 

spatial cooperation in

 

 

isoeffective dose in 2-Gy

 

in specific tissues and organs

chemoradiotherapy

 

fractions

124, 131

 

107, 178–88

 

 

 

 

248–9, 358

 

 

 

sublethal damage

359

 

 

volume effect and

195–204

spatial oxygen heterogeneity

 

incomplete repair see

 

 

time factors

149–57

 

 

221–2

 

 

 

 

incomplete repair

 

 

early/acute effects

169,

specific growth delay (SGD)

91

recovery from see recovery

169–70, 170, 170–4

 

SPECT, volume effect in lung

superoxide dismutase

304–5

late/chronic effects

155,

195–6

 

 

 

 

supra-additivity see synergism

169, 170, 174–6

 

 

spinal cord

 

181, 186–7, 198–200,

survival (cell)

 

 

 

 

signal transduction pathway

 

264–6

 

 

 

 

clonogenic cell see clonogenic

inhibitors

295–6, 318,

/ ratio

107, 181

 

 

cells

 

 

 

 

321

 

 

 

 

 

 

isoeffective dose in 2-Gy

 

curves

43–4

 

 

 

 

signalling to effectors in DNA

fractions

123

 

 

dose and, relationships between

damage

16–17

 

 

recovery from damage

115

47, 59

 

 

 

 

single-dose irradiation in

 

re-irradiation tolerance

 

264–6

dose-rate effect on

159–60

palliative radiotherapy

volume effects

198–200

 

linear–quadratic model and

138

 

 

 

 

 

 

spleen colony assay

44–5

 

 

104, 105

 

 

 

 

single-nucleotide polymorphisms

split-course RT

144

 

 

 

sweat (perspiratory) glands

178,

(SNPs)

327–8, 358

 

split-dose recovery see recovery

179

 

 

 

 

 

single-photon emission CT

 

from sublethal damage

symmetrical cell division

152,

(SPECT), volume effect in

squamous cell carcinoma

 

 

153, 154, 359

 

 

 

lung

195–6

 

 

 

cervical, chemoradiotherapy,

switch from asymmetrical to

single-strand breaks

 

 

 

therapeutic ratio

255

152–3, 154, 173–4, 353

link between double-strand

haemoglobin concentration

synergism/supra-additivity

359

breaks and

24

 

 

as prognostic factor

237

apoptosis induction

319

repair (SSBR)

24–5, 359

 

head and neck

 

 

 

chemoradiotherapy

248

drugs targeting

317, 320

chemoradiotherapy

246–7,

systemic induction of hypoxia in

single-target single-hit

 

 

 

247, 250

 

 

 

 

normal tissues

303

inactivations

47–8

 

molecular-targeted drugs

 

 

 

 

 

 

size, tumour, measuring

78–9

293

 

 

 

 

 

target cells

116–17, 359

 

 

skin 178, 204

 

 

 

 

 

PET-aided treatment

 

 

surviving fraction, LQ model

/ ratio

107, 180

 

 

 

planning

277–8

 

 

and

105

 

 

 

 

‘area’ effect

204

 

 

 

 

statistical aspects of

 

 

 

target theory of cell killing

 

47–9,

fractionation sensitivity

122

methodological problems

359

 

 

 

 

 

recovery from damage

115

in estimation of

 

 

target volume 191, 192

 

 

re-irradiation responses

 

dose–response

 

 

in PET-aided treatment

 

 

early

260

 

 

 

 

 

relationships from clinical

planning

271, 272, 273,

late

263

 

 

 

 

 

data

64

 

 

 

 

277–83

 

 

 

 

skull base tumours

 

 

 

 

stem cells

41

 

 

 

 

targeted agents, molecular see

heavy ion RT

336

 

 

 

neoplastic

41, 354

 

 

molecular targeted agents

proton therapy

335

 

 

normal tissue

171–4, 195–6

taste impairment

181, 188

 

small cell lung cancer,

 

 

 

outside treatment

 

 

taxol and reoxygenation

252

chemoradiotherapy

247

zone

195

 

 

 

teeth 183

 

 

 

 

 

374 Index

telangiectasia 175, 359 temozolomide, glioblastoma 246

testis

180

 

 

 

/ ratio

107, 180

 

cancer, second cancer risk after

 

treatment of

347

tetrachlorodecaoxide

 

309

tetrazolium-based cell growth

 

assays

46

 

 

TGF- see transforming growth

 

factor-

 

 

theragnostic imaging

 

282–3, 359

therapeutic index or ratio 7–8,

 

359

 

 

 

chemoradiotherapy

 

255

therapeutic window

63

threshold-based PET image

 

segmentation

 

274–5

thymidine kinase (TK)

82

time

359

 

 

 

cell cycle

80–2, 354

 

doubling see doubling time

fractionated RT and see

 

fractionation

 

 

of hypoxia exposure

222–3

in linear–quadratic model 112–14

normal tissue responses and see normal tissue responses

overall treatment, changing 125–6

reoxygenation and 214 tumour growth (TGT) 91 see also theragnostic imaging

time–dose–fractionation (TDF) 103

time interval between dose fractions, changing 123

time-scale effects 4–5 tirapazamine 240–1 tissue

normal see normal tissue response see response

TNF see tumour necrosis factor tocopherol 304, 309

tolerance (to radiation) 179–81, 326–8

prediction 326–8 re-treatment see re-irradiation

specific organs and tissues 179–81

time course of changes in

clinical observations

150

experimental observations

151

 

 

tissue architecture and

192–3

tolerance dose

359

 

TopIIIa 21

 

 

total dose, extrapolated

 

(biologically effective

dose)

114–16, 120, 353,

355

 

 

total effect (TE)

114, 116

toxic effects of treatment see

side-effects

 

 

TRAIL 28, 319

 

 

 

transcription factor,

 

 

hypoxia-inducible

227–9

transforming growth factor-

176

 

 

 

inhibitors of signalling

308

transfusion, blood

 

238, 241

transit cells, early effects of

radiation on

172, 173

translation and hypoxia

230–1

transplantation

 

 

 

bone marrow

310

 

bone marrow stem/progenitor

cell 311, 311–12

 

mesenchymal stem cell

310

treated volume (TV)

191, 192

3,3,3-trifluoropropylamine (EF3)

282

tubulin-binding agents 243 tumour(s) (malignant tumours;

cancer)

cell cycle checkpoints and 19–20

cure see local tumour control growth see growth; regrowth hypoxia see hypoxia metastases see metastases microenvironment 209–10,

217–32

new primary see second cancer phenotype, hypoxia and

224–5

regression see regression

responses see responses

 

role of RT

1–4

 

 

size, measuring

78

 

volume see volume

 

tumour bed effect

89, 91, 359

tumour control dose (TCD50)

 

assay

86–90, 359

 

tumour necrosis factor-

 

 

signalling, inhibition

307

tumour necrosis factor-related

 

apoptosis-inducing ligand

 

(TRAIL)

28, 319

 

2-Gy fractions

 

 

 

equivalent dose in see

 

 

equivalent dose in 2-Gy

 

fractions

 

 

isoeffective dose in see

 

 

isoeffective dose in 2-Gy

 

fractions

 

 

tyrosine kinase inhibitors

 

 

(TKIs)

243, 291, 297,

 

307

 

 

 

head and neck cancer 294

other cancers 294

 

UCN-01 319

 

 

 

unfolded protein response

231

ureter

180

 

 

 

urethra

180

 

 

 

urinary bladder see bladder

 

uterus

 

 

 

 

cancer of neck of see cervical

 

cancer

 

 

 

radiation effects

180

 

vagina

180

 

 

 

vascular endothelial growth factor (VEGF) 10

drugs targeting signalling 294–5

vasculature/blood vessels 9–10, 179

assessment of tumour

 

vascularization

211,

323

 

late effects on 175

 

new see angiogenesis

 

therapeutic targeting

242–4,

359

 

 

 

 

 

 

 

Index 375

 

 

 

 

VEGF see vascular endothelial

doubling time 78–9, 359

WF10

309

growth factor

gross 191, 192

WR2721

304

VHL protein and gene 227,

volume effects

191–206, 359

 

 

 

229

 

organ-specific, experimental

X-rays

68

vitamin E

304, 309

and clinical studies

xerostomia

179, 183, 203

volume(s)

 

195–204

 

XPF

25

 

definitions 191, 192

von Hippel–Lindau (VHL) protein

 

 

 

tumour

96–7

and gene

227, 229

zalutumumab 294

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]