- •Сверху вниз: упругое тело, левая отсеченная часть, правая отсеченная часть Рис.1. Метод сечений.
- •Эпюры внутренних усилий при растяжении-сжатии
- •Эпюры внутренних усилий при кручении
- •Дифференциальные зависимости между внутренними усилиями при изгибе
- •Напряженное состояние в точке. Тензор напряжений
- •Тензор деформации
- •Потенциальная энергия упругой деформации
- •Механические состояния деформируемых тел
- •Диаграммы упруго-пластического деформирования конструкционных материалов
- •Постановка задач теории надежности
- •Расчетные нагрузки, коэффициенты запаса
- •Расчеты по допускаемым нагрузкам и по допускаемым напряжениям
- •Напряжения при растяжении (сжатии) призматических стержней. Расчет на прочность
- •Понятие о концентрации напряжений, принцип сен-венана
- •Определение деформаций и перемещений
- •Напряженное состояние при растяжении (сжатии)
- •Применение к статически определимым системам.
- •Расчет статически неопределимых систем по способу допускаемых нагрузок.
- •Подбор сечений с учетом собственного веса (при растяжении и сжатии).
- •Деформации при действии собственного веса.
- •Вычисление моментов инерции и моментов сопротивления для простейших сечений.
- •Общий способ вычисления моментов инерции сложных сечений.
- •Наибольшее и наименьшее значения центральных моментов инерции.
- •Рациональные формы поперечных сечений при изгибе
- •Понятие о составных балках
- •Б) а) несвязанная конструкция, б) связанная сварная конструкция Рис.1. Расчетные схемы составных балок:
- •Дифференциальное уравнение прямого изгиба призматического стержня
- •Расчет валов
- •Понятие о сдвиге. Расчет заклепок на перерезывание.
- •А) расчетная схема, б) действующие усилия Рис.2. Соединение с накладками:
- •90 120 С двумя накладками.
- •А) расчетная схема б) линейное и нелинейное сопротивления Рис.1. Модели изгиба балки:
- •Изгиб балки при действии продольных и поперечных сил.
- •Внецентренное сжатие или растяжение.
- •Примем следующий порядок расчета.
- •3. Строится эпюра крутящего момента Мz.
- •Подбор сечений балок равного сопротивления.
- •Определение деформаций балок переменного сечения.
- •Общие понятия.
- •Расчет бесконечно длинной балки на упругом основании, загруженной одной силой р.
- •Постановка задачи.
- •Вычисление потенциальной энергии.
- •Расчетная модель к теореме Кастильяно.
- •Примеры приложения теоремы Кастильяно.
- •Теорема Максвелла—Мора.
- •Метод Верещагина.
- •А) расчетная схема б)грузовая эпюра в)фиктивное состояние г) эпюра моментов от единичного момента Рис.4. Иллюстрация метода Верещагина:
- •Общие понятия и метод расчета.
- •Способ сравнения деформаций.
- •А) исходная модель, б) фиктивная модель нагружения, в) грузовая эпюра моментов, г) эпюра моментов от реакции в, д) единичная эпюра моментов Рис.2. Решение методом Мора и Верещагина
- •Выбор лишней неизвестной и основной системы.
- •Общий план решения статически неопределимой задачи.
- •Определение деформаций статически неопределимых балок.
- •Связи, накладываемые на систему. Степень статической неопределимости.
- •А) плоская, б) плоскопространственная. В) пространственная Рис.2. Расчетные схемы рамных конструкций:
- •А)внешняя связь, б) две внешние связи в) шесть внешних связей в общем случае Рис.3. Схемы эквивалентных связей
- •А) три внешних связи, б) пять внешних связей Рис.4. Плоская рама
- •А) кинематически неизменяемая, б) неопределимая внутренним образом, в)со снятием дополнительных связей Рис.5. Классификационные признаки рам:
- •А) статически неопределимая — семь, б) — три, в) — четыре, г) — три, е) — двенадцать, ж) — семь, д) — три, и) — тринадцать раз статически неопределима Рис.6. Примеры рамных конструкций:
- •А) , б) и Рис.5. Интерпретация коэффициентов уравнений метода сил:
- •Напряжения в сферических толстостенных сосудах.
- •Диск равного сопротивления.
- •Формула Эйлера для определения критической силы.
- •Влияние способа закрепления концов стержня.
- •Проверка сжатых стержней на устойчивость.
- •Основные характеристики цикла и предел усталости
- •А) растяжение, б) изгиб, в) контактные напряжения Рис.1. Очаги концентрации местных напряжений:
- •Влияние состояния поверхности и размеров детали на усталостную прочность
- •Коэффициент запаса усталостной прочности и его определение
- •Постановка задачи. Явление Резонанса.
- •Влияние резонанса на величину напряжений.
- •Вычисление напряжений при колебаниях.
- •Учет массы упругой системы при колебаниях.
- •Основные положения
- •Общий прием вычисления динамического коэффициента при ударе.
- •А) двухопорная балка, б) консольная Рис.2. Модели удара:
А) плоская, б) плоскопространственная. В) пространственная Рис.2. Расчетные схемы рамных конструкций:
Разность между числом неизвестных (реакций опор и внутренних силовых факторов) и числом независимых уравнений статики, которые могут быть составлены для рассматриваемой системы, носит название степени или числа статической неопределимости. В зависимости от этого числа системы разделяются на один, два, три...., n раз статически неопределимые. Иногда говорят, что степень статической неопределимости равна числу дополнительных связей, наложенных на систему. Остановимся на этом вопросе подробнее.
Положение жесткого бруса в пространстве определяется шестью независимыми координатами, иначе говоря, жесткий брус обладает шестью степенями свободы. На брус могут быть наложены связи, т. е. ограничения, обусловливающие его определенное положение в пространстве. Наиболее простыми связями являются такие, при которых полностью исключается то или иное обобщенное перемещение для некоторых сечений бруса. Наложение одной связи снимает одну степень свободы с бруса как с жесткого целого. Следовательно, если на свободный жесткий брус наложено шесть связей, то положение его в пространстве как жесткого целого будет, за некоторыми исключениями, определено полностью и система из механизма, обладающего шестью степенями свободы, превращается в кинематически неизменяемую систему. То число связей, при котором достигается кинематическая неизменяемость, носит название необходимого числа связей. Всякую связь, наложенную сверх необходимых, называют дополнительной. Число дополнительных связей равно степени статической неопределимости системы.
Связи в рамах и стержневых системах делят обычно на связи внешние и связи внутренние, или взаимные. Под внешними связями понимаются условия, накладываемые на абсолютные перемещения некоторых точек системы.
А)внешняя связь, б) две внешние связи в) шесть внешних связей в общем случае Рис.3. Схемы эквивалентных связей
Если, например, на левый конец бруса (рис. 3, а) наложено условие, запрещающее вертикальное перемещение, говорят, что в этой точке имеется одна внешняя связь. Условно она изображается в виде двух шарниров или катка. Если запрещено как вертикальное, так и горизонтальное смещение, говорят, что наложены две внешние связи (рис. 3, б). Заделка в плоской системе дает три внешние связи. Пространственная заделка соответствует шести внешним связям (рис. 3, б). Внешние связи часто, как уже упоминалось, делят на необходимые и дополнительные. Например, на рис. 4, а и б показана плоская рама, имеющая в первом случае три внешние связи, а во втором — пять внешних связей. Для того чтобы определить положение рамы в плоскости как жесткого целого, необходимо наложение трех связей. Следовательно, в первом случае рама имеет необходимые внешние связи, а во втором, кроме того, две дополнительные внешние связи.
А) три внешних связи, б) пять внешних связей Рис.4. Плоская рама
Под внутренними, или взаимными, связями понимаются ограничения, накладываемые на взаимные смещения элементов рамы. Здесь также можно говорить как о необходимых, так и о дополнительных связях. Так, например, плоская рама, показанная на рис. 5, а, имеет необходимое количество как внешних, так и внутренних связей между элементами. Это — кинематически неизменяемая система. Если будут заданы внешние силы, мы сможем найти как реакции опор, так и внутренние силовые факторы в любом поперечном сечении рамы. В той же раме, показанной на рис. 5, б, дополнительно наложены две дополнительные внутренние связи, запрещающие взаимное вертикальное и горизонтальное смещения точек А и В. Система в данном случае дважды статически неопределима (иногда добавляют: «внутренним образом»).
В раме рис. 4, а и б также имеются внутренние дополнительные связи. Контур рамы полностью замкнут. Разрезая его в любом сечении (рис.5 в), мы, не нарушая кинематической неизменяемости, получаем возможность при заданных силах найти внутренние силовые факторы в каждом сечении рамы. Следовательно, разрезая замкнутую раму, мы снимаем дополнительные связи, т.е. позволяем сечениям А и В поворачиваться и смещаться в двух направлениях друг относительно друга. Обобщая, можно сказать, что замкнутый плоский контур имеет три дополнительные взаимные связи— трижды статически неопределим. Таким образом, рама, показанная на рис. 4, а, трижды статически неопределима. Рама, показанная на рис. 4, б, пять раз статически неопределима (три раза внутренним образом и два раза — внешним).