- •Сверху вниз: упругое тело, левая отсеченная часть, правая отсеченная часть Рис.1. Метод сечений.
- •Эпюры внутренних усилий при растяжении-сжатии
- •Эпюры внутренних усилий при кручении
- •Дифференциальные зависимости между внутренними усилиями при изгибе
- •Напряженное состояние в точке. Тензор напряжений
- •Тензор деформации
- •Потенциальная энергия упругой деформации
- •Механические состояния деформируемых тел
- •Диаграммы упруго-пластического деформирования конструкционных материалов
- •Постановка задач теории надежности
- •Расчетные нагрузки, коэффициенты запаса
- •Расчеты по допускаемым нагрузкам и по допускаемым напряжениям
- •Напряжения при растяжении (сжатии) призматических стержней. Расчет на прочность
- •Понятие о концентрации напряжений, принцип сен-венана
- •Определение деформаций и перемещений
- •Напряженное состояние при растяжении (сжатии)
- •Применение к статически определимым системам.
- •Расчет статически неопределимых систем по способу допускаемых нагрузок.
- •Подбор сечений с учетом собственного веса (при растяжении и сжатии).
- •Деформации при действии собственного веса.
- •Вычисление моментов инерции и моментов сопротивления для простейших сечений.
- •Общий способ вычисления моментов инерции сложных сечений.
- •Наибольшее и наименьшее значения центральных моментов инерции.
- •Рациональные формы поперечных сечений при изгибе
- •Понятие о составных балках
- •Б) а) несвязанная конструкция, б) связанная сварная конструкция Рис.1. Расчетные схемы составных балок:
- •Дифференциальное уравнение прямого изгиба призматического стержня
- •Расчет валов
- •Понятие о сдвиге. Расчет заклепок на перерезывание.
- •А) расчетная схема, б) действующие усилия Рис.2. Соединение с накладками:
- •90 120 С двумя накладками.
- •А) расчетная схема б) линейное и нелинейное сопротивления Рис.1. Модели изгиба балки:
- •Изгиб балки при действии продольных и поперечных сил.
- •Внецентренное сжатие или растяжение.
- •Примем следующий порядок расчета.
- •3. Строится эпюра крутящего момента Мz.
- •Подбор сечений балок равного сопротивления.
- •Определение деформаций балок переменного сечения.
- •Общие понятия.
- •Расчет бесконечно длинной балки на упругом основании, загруженной одной силой р.
- •Постановка задачи.
- •Вычисление потенциальной энергии.
- •Расчетная модель к теореме Кастильяно.
- •Примеры приложения теоремы Кастильяно.
- •Теорема Максвелла—Мора.
- •Метод Верещагина.
- •А) расчетная схема б)грузовая эпюра в)фиктивное состояние г) эпюра моментов от единичного момента Рис.4. Иллюстрация метода Верещагина:
- •Общие понятия и метод расчета.
- •Способ сравнения деформаций.
- •А) исходная модель, б) фиктивная модель нагружения, в) грузовая эпюра моментов, г) эпюра моментов от реакции в, д) единичная эпюра моментов Рис.2. Решение методом Мора и Верещагина
- •Выбор лишней неизвестной и основной системы.
- •Общий план решения статически неопределимой задачи.
- •Определение деформаций статически неопределимых балок.
- •Связи, накладываемые на систему. Степень статической неопределимости.
- •А) плоская, б) плоскопространственная. В) пространственная Рис.2. Расчетные схемы рамных конструкций:
- •А)внешняя связь, б) две внешние связи в) шесть внешних связей в общем случае Рис.3. Схемы эквивалентных связей
- •А) три внешних связи, б) пять внешних связей Рис.4. Плоская рама
- •А) кинематически неизменяемая, б) неопределимая внутренним образом, в)со снятием дополнительных связей Рис.5. Классификационные признаки рам:
- •А) статически неопределимая — семь, б) — три, в) — четыре, г) — три, е) — двенадцать, ж) — семь, д) — три, и) — тринадцать раз статически неопределима Рис.6. Примеры рамных конструкций:
- •А) , б) и Рис.5. Интерпретация коэффициентов уравнений метода сил:
- •Напряжения в сферических толстостенных сосудах.
- •Диск равного сопротивления.
- •Формула Эйлера для определения критической силы.
- •Влияние способа закрепления концов стержня.
- •Проверка сжатых стержней на устойчивость.
- •Основные характеристики цикла и предел усталости
- •А) растяжение, б) изгиб, в) контактные напряжения Рис.1. Очаги концентрации местных напряжений:
- •Влияние состояния поверхности и размеров детали на усталостную прочность
- •Коэффициент запаса усталостной прочности и его определение
- •Постановка задачи. Явление Резонанса.
- •Влияние резонанса на величину напряжений.
- •Вычисление напряжений при колебаниях.
- •Учет массы упругой системы при колебаниях.
- •Основные положения
- •Общий прием вычисления динамического коэффициента при ударе.
- •А) двухопорная балка, б) консольная Рис.2. Модели удара:
Способ сравнения деформаций.
Выполняя решение уравнения , названного уравнением совместности деформаций, можно рассуждать следующим образом.
Прогиб точки В основной системы под действием нагрузок q и В складывается из двух прогибов: одного , вызванного лишь нагрузкой q, и другого , вызванного реакцией В. Таким образом,
(1) |
Остается вычислить эти прогибы. Для этого загрузим основную систему одной нагрузкой q (рис.4, а).
Рис.4. Расчет прогиба от исходной нагрузки — а) и реакции — б)
Тогда прогиб точки В будет равен:
При нагружении основной системы реакцией В (Рис.4,б) имеем:
Подставляя эти значения прогибов в уравнение (1), получаем:
Отсюда
В этом способе мы сначала даем возможность основной системе деформироваться под действием внешней нагрузки q, а затем подбираем такую силу В, которая бы вернула точку В обратно. Таким образом, мы подбираем величину неизвестной дополнительной реакции В с тем расчетом, чтобы уравнять прогибы от нагрузки q и силы В. Этот способ и называют способом сравнения деформаций.
Рис.5. Эпюры поперечных сил и внутренних изгибающих моментов.
Подставляя значение лишней реакции В в уравнения статики, получаем
Выражение изгибающего момента получаем, рассматривая правую часть балки (Рис.4) и подставляя значение В:
Поперечная сила Q выражается формулой
Эпюры моментов и поперечных сил изображены на рис.5. Сечение с наибольшим положительным моментом соответствует абсциссе , определяемой равенством
т.е.
Отсюда соответствующая ордината эпюры моментов, равна:
Лекция № 36. Применение вариационных методов.
Раскрытие статической неопределимости для балки, может быть произведено и при помощи теоремы Кастильяно.
«Лишнюю» опорную реакцию В (Рис.1, а) заменяем «лишней» неизвестной силой В, действующей вместе с заданной нагрузкой q на основную статически определимую балку АВ (фиг. 361, б).
Рис.1. Исходная, а) и основная — б) расчетные схемы
Дифференцируя по силе В потенциальную энергию и вычисляя таким образом прогиб , следует приравнять нулю.
(1) |
Остается вычислить М и , установить пределы интеграла и взять его.
Будем считать, что сечение балки не меняется по длине. Тогда уравнение (1) примет вид:
или
отсюда
Далее решение не отличается от описанного в способе сравнения деформаций.
Раскрытие статической неопределимости возможно выполнить также и по теореме Мора. При решении по Мору, кроме первого состояния нагружения основной балки заданной нагрузкой и лишней неизвестной силой (Рис.2, а), следует показать ту же балку во втором состоянии загружения — силой (Рис.2,б).
Вычисления при обозначениях, принятых на Рис. 2, дают:
А) исходная модель, б) фиктивная модель нагружения, в) грузовая эпюра моментов, г) эпюра моментов от реакции в, д) единичная эпюра моментов Рис.2. Решение методом Мора и Верещагина
т.е. то же, что и при использовании теоремой Кастильяно.
При решении того же примера по способу Верищагина к двум схемам состояний загружения (Рис.2 а и б) следует построить эпюры моментов: от нагрузки q (Рис.2, в) от силы B (Рис.2 г), и от силы (Рис.2, д).
Величина моментных площадей:
от нагрузки q:
от нагрузки В:
Ординаты эпюр единичной нагрузки:
для умножения на :
для умножения на :
Прогиб в точке В
Отсюда
Совпадение результатов расчета опорной реакции очевидно.