
- •Сверху вниз: упругое тело, левая отсеченная часть, правая отсеченная часть Рис.1. Метод сечений.
- •Эпюры внутренних усилий при растяжении-сжатии
- •Эпюры внутренних усилий при кручении
- •Дифференциальные зависимости между внутренними усилиями при изгибе
- •Напряженное состояние в точке. Тензор напряжений
- •Тензор деформации
- •Потенциальная энергия упругой деформации
- •Механические состояния деформируемых тел
- •Диаграммы упруго-пластического деформирования конструкционных материалов
- •Постановка задач теории надежности
- •Расчетные нагрузки, коэффициенты запаса
- •Расчеты по допускаемым нагрузкам и по допускаемым напряжениям
- •Напряжения при растяжении (сжатии) призматических стержней. Расчет на прочность
- •Понятие о концентрации напряжений, принцип сен-венана
- •Определение деформаций и перемещений
- •Напряженное состояние при растяжении (сжатии)
- •Применение к статически определимым системам.
- •Расчет статически неопределимых систем по способу допускаемых нагрузок.
- •Подбор сечений с учетом собственного веса (при растяжении и сжатии).
- •Деформации при действии собственного веса.
- •Вычисление моментов инерции и моментов сопротивления для простейших сечений.
- •Общий способ вычисления моментов инерции сложных сечений.
- •Наибольшее и наименьшее значения центральных моментов инерции.
- •Рациональные формы поперечных сечений при изгибе
- •Понятие о составных балках
- •Б) а) несвязанная конструкция, б) связанная сварная конструкция Рис.1. Расчетные схемы составных балок:
- •Дифференциальное уравнение прямого изгиба призматического стержня
- •Расчет валов
- •Понятие о сдвиге. Расчет заклепок на перерезывание.
- •А) расчетная схема, б) действующие усилия Рис.2. Соединение с накладками:
- •90 120 С двумя накладками.
- •А) расчетная схема б) линейное и нелинейное сопротивления Рис.1. Модели изгиба балки:
- •Изгиб балки при действии продольных и поперечных сил.
- •Внецентренное сжатие или растяжение.
- •Примем следующий порядок расчета.
- •3. Строится эпюра крутящего момента Мz.
- •Подбор сечений балок равного сопротивления.
- •Определение деформаций балок переменного сечения.
- •Общие понятия.
- •Расчет бесконечно длинной балки на упругом основании, загруженной одной силой р.
- •Постановка задачи.
- •Вычисление потенциальной энергии.
- •Расчетная модель к теореме Кастильяно.
- •Примеры приложения теоремы Кастильяно.
- •Теорема Максвелла—Мора.
- •Метод Верещагина.
- •А) расчетная схема б)грузовая эпюра в)фиктивное состояние г) эпюра моментов от единичного момента Рис.4. Иллюстрация метода Верещагина:
- •Общие понятия и метод расчета.
- •Способ сравнения деформаций.
- •А) исходная модель, б) фиктивная модель нагружения, в) грузовая эпюра моментов, г) эпюра моментов от реакции в, д) единичная эпюра моментов Рис.2. Решение методом Мора и Верещагина
- •Выбор лишней неизвестной и основной системы.
- •Общий план решения статически неопределимой задачи.
- •Определение деформаций статически неопределимых балок.
- •Связи, накладываемые на систему. Степень статической неопределимости.
- •А) плоская, б) плоскопространственная. В) пространственная Рис.2. Расчетные схемы рамных конструкций:
- •А)внешняя связь, б) две внешние связи в) шесть внешних связей в общем случае Рис.3. Схемы эквивалентных связей
- •А) три внешних связи, б) пять внешних связей Рис.4. Плоская рама
- •А) кинематически неизменяемая, б) неопределимая внутренним образом, в)со снятием дополнительных связей Рис.5. Классификационные признаки рам:
- •А) статически неопределимая — семь, б) — три, в) — четыре, г) — три, е) — двенадцать, ж) — семь, д) — три, и) — тринадцать раз статически неопределима Рис.6. Примеры рамных конструкций:
- •А) , б) и Рис.5. Интерпретация коэффициентов уравнений метода сил:
- •Напряжения в сферических толстостенных сосудах.
- •Диск равного сопротивления.
- •Формула Эйлера для определения критической силы.
- •Влияние способа закрепления концов стержня.
- •Проверка сжатых стержней на устойчивость.
- •Основные характеристики цикла и предел усталости
- •А) растяжение, б) изгиб, в) контактные напряжения Рис.1. Очаги концентрации местных напряжений:
- •Влияние состояния поверхности и размеров детали на усталостную прочность
- •Коэффициент запаса усталостной прочности и его определение
- •Постановка задачи. Явление Резонанса.
- •Влияние резонанса на величину напряжений.
- •Вычисление напряжений при колебаниях.
- •Учет массы упругой системы при колебаниях.
- •Основные положения
- •Общий прием вычисления динамического коэффициента при ударе.
- •А) двухопорная балка, б) консольная Рис.2. Модели удара:
Выбор лишней неизвестной и основной системы.
В
предыдущем примере мы выбрали за лишнюю
неизвестную реакцию В.
Мы могли бы выбрать и момент
.
Соответственно изменилась бы основная
система и ход решения. Окончательный
же результат, конечно, получился бы
прежним. Возьмем за лишнюю неизвестную
опорный момент
(Рис.3,
а).
Какой будет основная система? Чтобы
получить ее, надо отбросить то опорное
закрепление, которое создает момент
,
т. е. защемление конца А.
Чтобы на конце А
не было опорного момента, там следует
поставить шарнирно-неподвижную опору.
Основной
системой будет балка, изображенная на
Рис.3, б.
Загрузим ее внешней нагрузкой и опорным
моментом
(фиг.
363, в).
Чтобы эти балки работали одинаково, надо для балки Рис.3, в написать дополнительное условие, что сечение А под действием изображенных нагрузок не может поворачиваться; накладываем это ограничение на перемещение, соответствующее выбранной лишней неизвестной:
Далее,
применив для решения уравнения
теорему
Кастильяно, имеем
а)
заданное. б) основная, в) эквивалентная
Рис.3.
Расчетные схемы:
следовательно,
Для
нахождения М и
выразим
реакцию В
основной
системы через
и
произведем все обычные вычисления:
.
находим:
Отсюда
,
т. е. той же величине, которая была получена раньше. Дальнейший ход решения не отличается от разобранного выше.
Решение
той же основной системы (Рис.4, а)
с применением способа Верещагина
потребует изображения второго состояния
загружения основной системы моментом
(Рис.4,
б)
и построения эпюр изгибающего момента:
от заданной нагрузки q
(Рис.4, в),
от момента
(Рис.4,
г)
и от единичной нагрузки;
(Рис.4,
д).
Вычисляем
:
а)исходная
схема, б) нагружение единичным моментом,
в) грузовая эпюра, г) моментная эпюра,
д) единичная эпюра моментов
Рис.4.
Динамика расчета по методу Верещагина:
Как
видно, уравнение для определения
полностью
совпадает с найденным по теореме
Ка-стильяно.
Сравнивая
два варианта решения поставленной
задачи с лишней неизвестной В
и с лишней неизвестной
,
видим, что при применении способа
Кастильяно первый вариант менее сложен
по вычислениям. Это объясняется тем,
что основной системой в первом варианте
является балка, защемленная одним
концом, во втором же — балка на двух
опорах; для второй — вычисления сложнее.
Таким образом, лишнюю неизвестную и,
следовательно, основную систему надо
выбирать с таким расчетом, чтобы выкладки
(вычисление изгибающих моментов и т.
д.) были проще.
Если бы мы выбрали за лишнюю неизвестную реакцию А, то основную систему следовало бы так устроить, чтобы опора А не давала возможности поворота сечения и горизонтальных перемещений, но допускала бы вертикальные движения.
За лишнюю неизвестную нельзя брать лишь ту реакцию, при отбрасывании которой мы получим изменяемую, неустойчивую основную систему.
Общий план решения статически неопределимой задачи.
Таким образом, общий метод решения, статически неопределимых задач распадается на ряд отдельных этапов.
В
дух предыдущих лекциях приведены два
варианта решения задачи: с лишней
реакцией В
и с лишней реакцией
.
Для развертывания добавочного условия
даны также два варианта решения: способом
сравнения деформаций и с применением
теоремы. Кастильяно.
Если бы число реакций статически неопределимой балки было нe четыре, как в рассмотренном примере, а больше, то соответственно увеличилось бы число лишних неизвестных; загрузив основную систему внешней нагрузкой и этими лишними неизвестными, мы можем написать дополнительные условия, ограничивающие деформации балки в тех сечениях, где эти лишние реакции приложены. Таким путем будет получено столько же дополнительных уравнений, сколько лишних неизвестных.
Следовательно, общий метод определения добавочных опорных реакций в статически неопределимых балках основан на том, что якая дополнительная опора, вводя лишнюю неизвестную реакцию, в то же время накладывает дополнительное ограничение в основной статически определимой системе на перемещение, соответствующее лишней неизвестной реакции. Выражая уравнением это ограничение, получаем столько дополнительных уравнений, сколько добавлено новых опорных закреплений.