- •Сверху вниз: упругое тело, левая отсеченная часть, правая отсеченная часть Рис.1. Метод сечений.
- •Эпюры внутренних усилий при растяжении-сжатии
- •Эпюры внутренних усилий при кручении
- •Дифференциальные зависимости между внутренними усилиями при изгибе
- •Напряженное состояние в точке. Тензор напряжений
- •Тензор деформации
- •Потенциальная энергия упругой деформации
- •Механические состояния деформируемых тел
- •Диаграммы упруго-пластического деформирования конструкционных материалов
- •Постановка задач теории надежности
- •Расчетные нагрузки, коэффициенты запаса
- •Расчеты по допускаемым нагрузкам и по допускаемым напряжениям
- •Напряжения при растяжении (сжатии) призматических стержней. Расчет на прочность
- •Понятие о концентрации напряжений, принцип сен-венана
- •Определение деформаций и перемещений
- •Напряженное состояние при растяжении (сжатии)
- •Применение к статически определимым системам.
- •Расчет статически неопределимых систем по способу допускаемых нагрузок.
- •Подбор сечений с учетом собственного веса (при растяжении и сжатии).
- •Деформации при действии собственного веса.
- •Вычисление моментов инерции и моментов сопротивления для простейших сечений.
- •Общий способ вычисления моментов инерции сложных сечений.
- •Наибольшее и наименьшее значения центральных моментов инерции.
- •Рациональные формы поперечных сечений при изгибе
- •Понятие о составных балках
- •Б) а) несвязанная конструкция, б) связанная сварная конструкция Рис.1. Расчетные схемы составных балок:
- •Дифференциальное уравнение прямого изгиба призматического стержня
- •Расчет валов
- •Понятие о сдвиге. Расчет заклепок на перерезывание.
- •А) расчетная схема, б) действующие усилия Рис.2. Соединение с накладками:
- •90 120 С двумя накладками.
- •А) расчетная схема б) линейное и нелинейное сопротивления Рис.1. Модели изгиба балки:
- •Изгиб балки при действии продольных и поперечных сил.
- •Внецентренное сжатие или растяжение.
- •Примем следующий порядок расчета.
- •3. Строится эпюра крутящего момента Мz.
- •Подбор сечений балок равного сопротивления.
- •Определение деформаций балок переменного сечения.
- •Общие понятия.
- •Расчет бесконечно длинной балки на упругом основании, загруженной одной силой р.
- •Постановка задачи.
- •Вычисление потенциальной энергии.
- •Расчетная модель к теореме Кастильяно.
- •Примеры приложения теоремы Кастильяно.
- •Теорема Максвелла—Мора.
- •Метод Верещагина.
- •А) расчетная схема б)грузовая эпюра в)фиктивное состояние г) эпюра моментов от единичного момента Рис.4. Иллюстрация метода Верещагина:
- •Общие понятия и метод расчета.
- •Способ сравнения деформаций.
- •А) исходная модель, б) фиктивная модель нагружения, в) грузовая эпюра моментов, г) эпюра моментов от реакции в, д) единичная эпюра моментов Рис.2. Решение методом Мора и Верещагина
- •Выбор лишней неизвестной и основной системы.
- •Общий план решения статически неопределимой задачи.
- •Определение деформаций статически неопределимых балок.
- •Связи, накладываемые на систему. Степень статической неопределимости.
- •А) плоская, б) плоскопространственная. В) пространственная Рис.2. Расчетные схемы рамных конструкций:
- •А)внешняя связь, б) две внешние связи в) шесть внешних связей в общем случае Рис.3. Схемы эквивалентных связей
- •А) три внешних связи, б) пять внешних связей Рис.4. Плоская рама
- •А) кинематически неизменяемая, б) неопределимая внутренним образом, в)со снятием дополнительных связей Рис.5. Классификационные признаки рам:
- •А) статически неопределимая — семь, б) — три, в) — четыре, г) — три, е) — двенадцать, ж) — семь, д) — три, и) — тринадцать раз статически неопределима Рис.6. Примеры рамных конструкций:
- •А) , б) и Рис.5. Интерпретация коэффициентов уравнений метода сил:
- •Напряжения в сферических толстостенных сосудах.
- •Диск равного сопротивления.
- •Формула Эйлера для определения критической силы.
- •Влияние способа закрепления концов стержня.
- •Проверка сжатых стержней на устойчивость.
- •Основные характеристики цикла и предел усталости
- •А) растяжение, б) изгиб, в) контактные напряжения Рис.1. Очаги концентрации местных напряжений:
- •Влияние состояния поверхности и размеров детали на усталостную прочность
- •Коэффициент запаса усталостной прочности и его определение
- •Постановка задачи. Явление Резонанса.
- •Влияние резонанса на величину напряжений.
- •Вычисление напряжений при колебаниях.
- •Учет массы упругой системы при колебаниях.
- •Основные положения
- •Общий прием вычисления динамического коэффициента при ударе.
- •А) двухопорная балка, б) консольная Рис.2. Модели удара:
А) расчетная схема б) линейное и нелинейное сопротивления Рис.1. Модели изгиба балки:
Известно, что косой изгиб имеет место, когда силы, его вызывающие, не лежат в одной из главных плоскостей инерции. Однако, если разложить внешние силы по главным осям инерции Ох и Оу, то получим две системы сил P1x, P2x, …, Pnx и P1y, P2y,..., Pny, каждая из.которых вызывает прямой изгиб с изгибающими моментами соответственно My и Мx (рис. 2). Применяя принцип независимости действия сил, нормальные напряжения (рис. 3) определим как алгебраическую сумму напряжений от Mx и Мy:
Чтобы не связывать себя формальными правилами знаков, слагаемые будем определять по модулю, а знаки ставить по смыслу. Прогибы балки определим как геометрическую сумму прогибов от прямых изгибов (рис. 2)
.
Таким образом, расчет на косой изгиб с применением принципа независимости действия сил сводится к расчету на два прямых изгиба с последующим алгебраическим суммированием напряжений и геометрическим суммированием прогибов.
Рис.2. Расчетная модель косого изгиба бруса
Рис.3. Связь нормального напряжения с внутренними изгибающими моментами
В случае поперечных сечений, имеющих две оси симметрии и выступающие угловые точки (рис. 4) с равными по модулю и максимальными одноименными координатами и напряжения в этих точках будут равны
Слагаемые в этом выражении рекомендуется определять по модулю, а знаки ставить по смыслу. Например, на рис. 5 верхний ряд знаков «+» и «—» соответствует напряжениям от Мx, а нижний ряд — от My, и напряжения в этих точках будут равны
Рис.4. Симметричные варианты сечений
Рис.5. Расстановка знаков от действия моментов
Условие прочности для балок из пластичного материала с указанным типом сечений запишется в виде
В остальных случаях для определения max а (или max dp и max для хрупкого материала) необходимо по общей формуле проверить напряжения во всех подозрительных точках.
Есть и другой путь: положив , получим уравнение нейтральной линии. Так как напряжения в точках поперечного сечения будут пропорциональными расстояниям от нейтральной линии, то max будут возникать в наиболее удаленных от нее точках.
Лекция № 27. Совместное действие изгиба и растяжения или сжатия.
Изгиб балки при действии продольных и поперечных сил.
На практике очень часто встречаются случаи совместной работы стержня на изгиб и на растяжение или сжатие. Подобного рода деформация может вызываться или совместным действием на балку продольных и поперечных сил, или только одними продольными силами.
Первый случай изображен на Рис.1. На балку АВ действуют равномерно распределенная нагрузка q и продольные сжимающие силы Р.
Рис.1. Совместное действие изгиба и сжатия.
Предположим, что прогибами балки по сравнению с размерами поперечного сечения можно пренебречь; тогда с достаточной для практики степенью точности можно считать, что и после деформации силы Р будут вызывать лишь осевое сжатие балки.
Применяя способ сложения действия сил, мы можем найти нормальное напряжение в любой точке каждого поперечного сечения балки как алгебраическую сумму напряжений, вызванных силами Р и нагрузкой q.
Сжимающие напряжения от сил Р равномерно распределены по площади F поперечного сечения и одинаковы для всех сечений:
нормальные напряжения от изгиба в вертикальной плоскости в сечении с абсциссой х, которая отсчитана, скажем, от левого конца балки, выражаются формулой
Таким образом, полное напряжение в точке с координатой z (считая от нейтральной оси) для этого сечения равно
На Рис.2 изображены эпюры распределения напряжений в рассматриваемом сечении от сил Р, нагрузки q и суммарная эпюра.
Наибольшее напряжение в этом сечении будет в верхних волокнах, где оба вида деформации вызывают сжатие; в нижних волокнах может быть или сжатие или растяжение в зависимости от числовых величин напряжений и . Для составления условия прочности найдем наибольшее нормальное напряжение.
Рис.2. Сложение напряжений сжатия и изгиба
Так как напряжения от сил Р во всех сечениях одинаковы и равномерно распределены, то опасными будут волокна, наиболее напряженные от изгиба. Такими являются крайние волокна в сечении с наибольшим изгибающим моментом; для них
Таким образом, напряжения в крайних волокнах 1 и 2 среднего сечения балки выражаются формулой
,
и расчетное напряжение будет равно
Если бы силы Р были растягивающими, то знак первого слагаемого изменился бы, опасными были бы нижние волокна балки.
Обозначая буквой N сжимающую или растягивающую силу, можем написать общую формулу для проверки прочности:
(27.1) |
Описанный ход расчета применяется и при действии на балку наклонных сил. Такую силу можно разложить на нормальную к оси, изгибающую балку, и продольную, сжимающую или растягивающую.