
- •Саратовский государственный технический университет сопротивление материалов
- •Саратов 2001
- •410054 Г. Саратов, ул. Политехническая, 77
- •Указания по оформлению расчетно-графических работ
- •Расчетно-графическая работа 1 геометрические характеристики плоских сечений
- •Целъ работы
- •Задание на работу
- •Технические и языковые средства выполнения работы
- •Теоретическая часть
- •Иллюстративные примеры
- •Пример I
- •Вычисление величины площади поперечного сечения
- •Определение положения центра тяжести сечения
- •Вычисление величин моментов инерции сечения
- •Определение положения главных центральных осей и вычисление величин главных центральных моментов инерции
- •Пример 2
- •Пример 3
- •Пример 4
- •Порядок выполнения работы
- •Содержание и оформление отчета о работе
- •Контрольные вопросы
- •Бланк-задание
- •Контрольный пример
- •Программа
- •Некоторые свединия из векторной алгебры
- •Литература
- •Вычисление геометрических характеристик плоских сечений с использованием векторного анализа на пэвм
- •410054 Г.Саратов, ул. Политехническая, 77
- •Цель работы
- •Постановка задачи
- •Задание
- •Построение эпюр секториальных статических моментов и
- •Отсеченных частей сечения
- •Порядок выполнения работы
- •Содержание и оформление отчета о работе
- •Конечные результаты работы
- •Контрольные вопросы
- •Варианты задания
- •Литература
- •410016 Г. Саратов, ул. Политехническая. 77
- •Цель работы
- •Постановка задачи
- •Заданий
- •Технические и языковые средства выполнения работы
- •Построение эпюр изгибающего момента м и попересной силы q
- •Вычисление момента в и изгибно-крутящего момента Мω
- •Определение величин начальных параметров
- •Построение эрюр угла закручивания , депланации , бимомента и изгибающего-крутяшего момента
- •Построение эпюр нормальных , и касательных , напряжений для ряда сечений стержня
- •Исследование характера изменения бимоментных напряжений вдоль стержня и их вклада в суммарные напряжения
- •Контрольный контур
- •Контрольные вопросы
- •410016 Г. Саратов, ул. Политехническая. 77
- •Цель работы
- •Постановка задачи
- •Задание
- •Технические и языковые средства выполнения работы
- •Приведение уравнений и формул к безразмерному виду
- •Построение аппроксимирующих функций статическим методом в.З. Власова
- •Вычисление амплитуды прогиба пластины По методу Бубнова – Галеркина
- •Построение в заданных сечения пластины эпюр прогиба, изгибающих и крутящих моментов поперечных сил
- •Исследование влияния степени вытянутости плана пластины на ее напряженное состояние
- •Порядок выполнения работы
- •Содержание и оформление отчета о работе
- •Контрольные вопросы
- •Инструкции к программе
- •Бланк-задание
- •Программа
- •410016 Г. Саратов, ул. Политехническая. 77
- •Цель работы
- •Постановка задачи
- •Задание
- •Технические и языковые средства выполнения работы
- •Приведение уравнений и формул к безразмерному виду
- •Построение аппроксимирующих функций статическим методом в.З. Власова
- •Вычисление амплитуды прогиба пластины По методу Ритца-Тимошенко
- •Построение в заданных сечения пластины эпюр прогиба, изгибающих и крутящих моментов, поперечных сил
- •Исследование влияния степени вытянутости плана пластины на ее напряженное состояние
- •Порядок выполнения работы
- •Содержание и оформление отчета о работе
- •Контрольные вопросы
- •Инструкции к программе
- •Бланк-задание
- •Программа
- •410016 Г. Саратов, ул. Политехническая. 77
- •Цель работы
- •Задание на работу
- •Теоретическая часть
- •Примеры расчета пластинок методом конечных разностей
- •Порядок выполнения работы
- •Содержание и оформление отчета о работе
- •Контрольные вопросы
- •Варианты заданий
- •Соотношение сторон пластинок — цифра 3
- •Инструкция к программе «plate» расчета пластинки методом конечных разностей
- •Контрольные примеры пример 1
- •Пример 2 Расчет пластинки с рис. 8 б в безразмерном виде
- •V каком vide raschet???:razmer. - vvedf1", bezrazm. - vvedi''0 "
- •Литература
- •Содержание
- •410054, Саратов, Политехническая ул., 77
- •Цель работы
- •Задание на работу
- •Теоретическая часть
- •Идея метода конечных элементов
- •Уравнения метода конечных элементов
- •Примеры расчета пластинок мкэ
- •Порядок действий в алгоритме мкэ:
- •Порядок выполнения работы
- •Содержание и оформление отчета о работе
- •Контрольные вопросы
- •21. Элементами каких инженерных сооружений являются пластинки? варианты заданий
- •Контрольные примеры
410054, Саратов, Политехническая ул., 77
Отпечатано в РИЦ СГТУ. 410054, Саратов, Политехническая ул., 77
Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Саратовский государственный технический университет
РАСЧЕТ ПЛАСТИНКИ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ
Методические указания к выполнению расчетно-графической работы
по курсу «Сопротивление материалов» для студентов специальностей 291100, 290300
Одобрено
редащионно-издателъским советом
Саратовского государственного
технического университета
Саратов 2006
ВВЕДЕНИЕ
Составной частью прикладной теории упругости является расчет пластинок, которые в настоящее время нашли широкое применение в различных областях техники: строительстве, азиации, судостроении, машиностроении.
Это объясняется присущей тонкостенным конструкциям легкостью, рациональностью форм, которые сочетаются с их высокой несущей способностью, экономичностью и хорошей технологичностью.
В настоящее время детально разработаны методики как численного, так и аналитического расчета пластинок на действие нагрузок самого общего вида, что позволяет решать реальные задачи проектирования для данного класса объектов.
Основой излагаемого ниже алгоритма расчета является метод конечных элементов (МКЭ). Использование этого метода при расчете пластинок позволяет учесть действие не только распределенных, но и сосредоточенных сил, задавать на сторонах контура пластинок различные условия закрепления, в том числе и меняющиеся вдоль стороны контура, учитывать различные особенности в конкретных зонах пластинок.
Кроме того, применение МКЭ позволяет ограничиться привлечением минимального набора средств высшей математики и весьма эффективно применять ПЭВМ в рамках единого алгоритма получения решения задачи с заданной степенью точностью.
К преимуществам МКЭ можно отнести:
1) понижение размерности при численном решении задачи,
2) эффективность применения метода в зонах краевого эффекта,
3) возможность моделирования конструкций, выполненных из материалов с самыми различными свойствами.
В процессе проектирования часто возникает потребность в оценке наиболее значимых физико-механических свойств конструкции. В докомпьютерные времена единственным средством выявления физико-механических свойств были оценочные расчеты с использованием приближенных аналитических или полу эмпирических методик. Появление компьютерной техники и развитие вычислительной математики обусловили изменение традиционных подходов к инженерным расчетам.
Начиная с 60-х годов наиболее значимым методом численного решения самых разных физических задач становится МКЭ, к достоинствам которого относятся:
1) универсальность (пригодность для решения самых разных задач математической физики),
2) высокая степень алгоритмизуемости (возможность разработки универсальных программных комплексов),
3) высокая степень численной устойчивости МО-алгоритмов,
4) возможность расчета пластинок сложного плана.
Длительное время развитие МКЭ сдерживалось недостаточным развитием компьютерной техники. Однако с начала 90-х годов ситуация стала быстро улучшаться. Совершенствование ПЭВМ и целенаправленное использование перечисленных выше достоинств метода привели к созданию целой отрасли программного обеспечения для широкого использования в проектных целях системы инженерного анализа, известного под аббревиатурой САЕ (Computer Aided Engineering).