- •Саратовский государственный технический университет сопротивление материалов
- •Саратов 2001
- •410054 Г. Саратов, ул. Политехническая, 77
- •Указания по оформлению расчетно-графических работ
- •Расчетно-графическая работа 1 геометрические характеристики плоских сечений
- •Целъ работы
- •Задание на работу
- •Технические и языковые средства выполнения работы
- •Теоретическая часть
- •Иллюстративные примеры
- •Пример I
- •Вычисление величины площади поперечного сечения
- •Определение положения центра тяжести сечения
- •Вычисление величин моментов инерции сечения
- •Определение положения главных центральных осей и вычисление величин главных центральных моментов инерции
- •Пример 2
- •Пример 3
- •Пример 4
- •Порядок выполнения работы
- •Содержание и оформление отчета о работе
- •Контрольные вопросы
- •Бланк-задание
- •Контрольный пример
- •Программа
- •Некоторые свединия из векторной алгебры
- •Литература
- •Вычисление геометрических характеристик плоских сечений с использованием векторного анализа на пэвм
- •410054 Г.Саратов, ул. Политехническая, 77
- •Цель работы
- •Постановка задачи
- •Задание
- •Построение эпюр секториальных статических моментов и
- •Отсеченных частей сечения
- •Порядок выполнения работы
- •Содержание и оформление отчета о работе
- •Конечные результаты работы
- •Контрольные вопросы
- •Варианты задания
- •Литература
- •410016 Г. Саратов, ул. Политехническая. 77
- •Цель работы
- •Постановка задачи
- •Заданий
- •Технические и языковые средства выполнения работы
- •Построение эпюр изгибающего момента м и попересной силы q
- •Вычисление момента в и изгибно-крутящего момента Мω
- •Определение величин начальных параметров
- •Построение эрюр угла закручивания , депланации , бимомента и изгибающего-крутяшего момента
- •Построение эпюр нормальных , и касательных , напряжений для ряда сечений стержня
- •Исследование характера изменения бимоментных напряжений вдоль стержня и их вклада в суммарные напряжения
- •Контрольный контур
- •Контрольные вопросы
- •410016 Г. Саратов, ул. Политехническая. 77
- •Цель работы
- •Постановка задачи
- •Задание
- •Технические и языковые средства выполнения работы
- •Приведение уравнений и формул к безразмерному виду
- •Построение аппроксимирующих функций статическим методом в.З. Власова
- •Вычисление амплитуды прогиба пластины По методу Бубнова – Галеркина
- •Построение в заданных сечения пластины эпюр прогиба, изгибающих и крутящих моментов поперечных сил
- •Исследование влияния степени вытянутости плана пластины на ее напряженное состояние
- •Порядок выполнения работы
- •Содержание и оформление отчета о работе
- •Контрольные вопросы
- •Инструкции к программе
- •Бланк-задание
- •Программа
- •410016 Г. Саратов, ул. Политехническая. 77
- •Цель работы
- •Постановка задачи
- •Задание
- •Технические и языковые средства выполнения работы
- •Приведение уравнений и формул к безразмерному виду
- •Построение аппроксимирующих функций статическим методом в.З. Власова
- •Вычисление амплитуды прогиба пластины По методу Ритца-Тимошенко
- •Построение в заданных сечения пластины эпюр прогиба, изгибающих и крутящих моментов, поперечных сил
- •Исследование влияния степени вытянутости плана пластины на ее напряженное состояние
- •Порядок выполнения работы
- •Содержание и оформление отчета о работе
- •Контрольные вопросы
- •Инструкции к программе
- •Бланк-задание
- •Программа
- •410016 Г. Саратов, ул. Политехническая. 77
- •Цель работы
- •Задание на работу
- •Теоретическая часть
- •Примеры расчета пластинок методом конечных разностей
- •Порядок выполнения работы
- •Содержание и оформление отчета о работе
- •Контрольные вопросы
- •Варианты заданий
- •Соотношение сторон пластинок — цифра 3
- •Инструкция к программе «plate» расчета пластинки методом конечных разностей
- •Контрольные примеры пример 1
- •Пример 2 Расчет пластинки с рис. 8 б в безразмерном виде
- •V каком vide raschet???:razmer. - vvedf1", bezrazm. - vvedi''0 "
- •Литература
- •Содержание
- •410054, Саратов, Политехническая ул., 77
- •Цель работы
- •Задание на работу
- •Теоретическая часть
- •Идея метода конечных элементов
- •Уравнения метода конечных элементов
- •Примеры расчета пластинок мкэ
- •Порядок действий в алгоритме мкэ:
- •Порядок выполнения работы
- •Содержание и оформление отчета о работе
- •Контрольные вопросы
- •21. Элементами каких инженерных сооружений являются пластинки? варианты заданий
- •Контрольные примеры
410016 Г. Саратов, ул. Политехническая. 77
Ротапринт СПИ 410010. г. Саратов, ул. Политехническая, 77
Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Саратовский государственный технический университет
ПРИМЕНЕНИЕ МЕТОДА КОНЕЧНЫХ РАЗНОСТЕЙ К РАСЧЕТУ ПЛАСТИНОК НА ПЭВМ
Методические указания к выполнению расчетно-графической работы
по курсу «Сопротивление материалов» для студентов специальностей 291100, 290300
Одобрено
редакционно-издательским советом
Саратовского государственного
технического университета
Саратов 2008
ВВЕДЕНИЕ
Составной частью прикладной теории упругости является расчет пластинок, которые в настоящее время нашли широкое применение в различных областях техники: строительстве, авиации, судостроении, машиностроении.
Это объясняется присущей тонкостенным конструкциям жёсткостью, рациональностью форм, которые сочетаются с их высокой несущей способностью, экономичностью и хорошей технологичностью.
В настоящее время детально разработаны методики как численного, так и аналитического расчета пластинок на действие нагрузок самого общего вида, что позволяет решать реальные задачи проектирования для данного класса объектов.
Основой излагаемого ниже алгоритма расчета является метод конечных разностей (МКР). Использование этого метода при расчете пластинок позволяет учесть действие поперечных нагрузок при любом законе их распределения, задавать на сторонах контура пластинок различные условия закрепления, в том числе и меняющиеся вдоль стороны контура.
Кроме того, применение МКР позволяет ограничиться привлечением минимального набора средств высшей математики и весьма эффективно применять ПЭВМ в рамках единого алгоритма получения решения задачи с заданной степенью точности.
К преимуществам МКР можно отнести:
1) универсальность (пригодность для решения самых разных задач математической физики);
2) высокую степень алгоритмизуемости (возможность разработки универсальных программных комплексов);
3) высокую степень численной устойчивости МКР-алгоритмов;
4) наличие возможности расчета пластинок сложного плана;
5) возможность решения задач изгиба прямоугольных пластинок при любом закреплении и нагружении в рамках единого алгоритма;
6) возможность исследования сходимости получаемого приближенного решения при уменьшении шага сетки конечно-разностных узлов.
В методических указаниях рассматриваются вопросы расчета на прочность и жесткость тонких упругих пластин на прямоугольном плане при произвольных способах их закрепления и поперечного нагружения.
При изучении данного раздела курса «Сопротивление материалов» используются некоторые разделы курсов «Высшая математика» и «Информатика».
Знания, полученные студентами при изучении методики расчета пластинок МКР, могут быть использованы ими при курсовом и дипломном проектировании.
