Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
274_vfv.docx
Скачиваний:
87
Добавлен:
15.11.2019
Размер:
11.88 Mб
Скачать

Билет № 24

  1. Потенциалы двойного электрического слоя. Зависимость от концентрации электролита

Электрической характеристикой ДЭС является потенциал φ. Существует несколько характеристических потенциалов:

Потенциал диффузного слоя φδ, соответствующий границе адсорбционного и диффузного слоёв. Внутри диффузного слоя потенциал можно рассчитать по уравнению Гуи-Чепмена:

Потенциал φx=λ, меньший, чем φδ в e раз и характеризующий толщину диффузного слоя.

Толщина диффузного слоя К существенно больше, ( может быть 10 нм) - п сильно зависит от концентрации электролитов в системе При высоких концентрациях электролитов или при введении многозарядных ионов ионный фактор к становится большим, а толщина К 1 / х мала и стремится к нулю. В пределе К 0 и частица незаряжена. В этом случае противоионы адсорбционного слоя полностью компенсируют поверхностный заряд ядра. В результате достигается так называемое изоэлектрическое состояние, часто сопровождающееся потерей агрегативной устойчивости системы. Толщина диффузного слоя возрастает с уменьшением валентности ионов и концентрации раствора. Толщина диффузного слоя, а вместе с ней и значение С-потенциала сильно зависят от концентрации противоионов не только основного электролита, обусловливающего заряд данного золя, но и от концентрации противоионов посторонних электролитов. Чем выше концентрация, тем больше противоионов проникает за плоскость скольжения в адсорбционный слой и тем меньше остается их в диффузном слое, а следовательно тем меньше становится С-потенциал. При уменьшении концентрации толщина диффузного слоя противоионов, наоборот, становится больше и при бесконечном разведении, как показывают исследования, может достичь весьма значительных размеров, порядка 1 мк, в то время как толщина адсорбционного слоя составляет доли миллимикрона; в этих условиях и величина С-потенциала достигает максимальных значений, приближающихся к значениям с-потенциала.

Электрокинетический потенциал или дзета-потенциал. Этот потенциал соответствует плоскости скольжения и является частью потенциала диффузного слоя. Плоскость скольжения образуется в результате того, что при движении дисперсных частиц наиболее удаленная часть диффузного слоя не участвует в движении, а остается неподвижной. Поэтому появляется нескомпенсированность поверхностного заряда частицы и становятся возможными электрокинетические явления. Дзета-потенциал является одной из важнейших характеристик двойного электрического слоя.

-существует между слоем ионов адсорбционного слоя и диффузного слоя. Электрокинетический потенциал назван так потому, что диффузный слой подвижен и может смещаться при движении мицеллы. Этот потенциал составляет часть термодинамического потенциала и всегда меньше его.

Дзета-потенциал определяется толщиной диффузного слоя противоионов, следовательно, его величина находится в обратной зависимости от концентрации электролитов, присутствующих в растворе. Увеличение концентрации электролитов влечет за собой уменьшение толщины диффузного слоя и, как следствие, уменьшение дзета-потенциала. Согласно закону действия масс повышение концентрации электролита способствует понижению концентрации противоионов в диффузном слое. При этом часть противоинов переходит из диффузного в адсорбционный слой, в результате дзета-потенциал уменьшается.

Электрокинетический потенциал снижается по мере удаления от поверхности гранулы (или твердого тела). На  -потенциал влияет концентрация ионов в растворе. При увеличении концентрации ионов -потенциал уменьшается за счет перехода части ионов диффузного слоя в адсорбционный слой или благодаря замене ионов с зарядом одного знака на ионы с зарядом другого знака.

Добавление ионов, особенно многозарядных, может привести к их адсорбции в таких количествах, что произойдет перезарядка гранулы и изменение знака электрокинетического потенциала. Когда все противоионы находятся в адсорбционном слое,  -потенциал становится равным нулю. Подобное состояние называется изоэлектрическим состоянием (изоэлектрической точкой).

С увеличением концентрации ионов электрокинетический потенциал уменьшается, проходит через изоэлектрическую точку, изменяет знак и снова увеличивается. В изоэлектрическом состоянии электрокинетический потенциал равен нулю, и в этом состоянии дисперсные системы наименее устойчивы, частицы укрупняются, выпадают в осадок, и из ядра, играющего роль кристаллического зародыша, вырастает кристалл. Лиофильные системы в отличие от лиофобных в изоэлектрическом состоянии устойчивы (кроме некоторых белков).

Знак заряда гранулы может меняться при смене растворителя, а также при изменении среды раствора. У амфотерного гидроксида алюминия знак заряда гранулы в кислотной и нейтральной средах положителен и потенциалопределяющими являются ионы алюминия; в слабощелочной среде знак заряда гранулы становится отрицательным (потенциалопределяющие ионы – алюминат- или гидроксид-ионы, противоионы – катионы). Смена знака заряда происходит при переходе через значение рН, соответствующее изоэлектрической точке.

Знак заряда коллоидной частицы устанавливается по направлению ее движения к соответствующему электроду при пропускании постоянного электрического тока. Знак заряда может быть определен другим очень простым способом – по характеру взаимодействия окрашенных коллоидных частиц с целлюлозой бумаги. В водной среде капилляры целлюлозы заряжаются отрицательно, а находящаяся в них вода – положительно. Вдоль полоски фильтровальной бумаги (целлюлоза) по ее капиллярам могут передвигаться частицы, имеющие тот же заряд, что и целлюлоза, т.е. отрицательно заряженные частицы. Положительно заряженные частицы задерживаются на стенках капилляров в самом начале пути.