Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
274_vfv.docx
Скачиваний:
65
Добавлен:
15.11.2019
Размер:
11.88 Mб
Скачать
  1. Адсорбционный потенциал

Поляни предложил рассматривать процесс адсорбции аналогично сжатию молекул адсорбтива в некотором поле адсорбционных сил вблизи поверхности адсорбента. Этот процесс протекает таким образом, что на поверхности адсорбента в результате сжатия адсорбтива в поле адсорбционных сил формируется жидкая пленка, т.е. происходит конденсация адсорбтива. Для упрощения Поляни допускал, что в поле адсорбционных сил газ подчиняется закону Менделеева-Клапейрона. Это означает, что адсорбент химически инертный и адсорбция протекает только в результате физического взаимодействия между молекулами адсорбента и адсорбтива. В этом случае можно было ввести количественную характеристику поля адсорбционных сил, а именно, адсорбционный потенциал e, равный работе сжатия одного моля газа или пара от равновесного давления Р в объеме до давления насыщения Ps. Этот потенциал можно также рассматривать как работу перемещения одного моля газа с бесконечно большого расстояния на поверхность адсорбента. Из химической термодинамики известно, что работа сжатия идеального газа вплоть до его конденсации может быть описана уравнением . Потенциал адсорбционных сил в трактовке Поляни является не чем иным, как дифференциальной свободной энергией адсорбции, т.е. e = - DGа.

Адсорбционный потенциал имеет постоянное значение вдоль сечения очень узких микропор, но в более широких микропорах его значение проходит через минимум; минимальное значение потенциала наблюдается вблизи центра поры. В случае малых пор минимальное значение потенциала соответствует точке кривой, удаленной от центра поры на расстояние, меньшее радиуса поры. В случае больших пор результирующая кривая не достигает минимума, прежде чем адсорбция не вступит в стадию, в которой относительное давление приближается к единице. Следовательно, будет или не будет в поре данного диаметра происходить капиллярная конденсация, зависит от профиля кривой потенциальной энергии. Самопроизвольное заполнение поры большого диаметра, приводящее к капиллярной конденсации, происходило бы в том случае, если адсорбционный потенциал был бы высок, а силы отталкивания - слабы. Такое положение соответствует сильному сродству адсорбент - адсорбат и слабому взаимодействию между слоями адсорбата.  Адсорбционный потенциал отличается от теплоты адсорбции теплотой сжатия, которой часто можно пренебречь.

Билет № 22

  1. Потенциал и ток течения

возникновение поля при движении жидкости через пористую среду или мембрану (потенциал и ток течения).

где E – напряженность электрического поля, ε – диэлектрическая проницаемость среды, ε0 – диэлектрическая постоянная, η– вязкость среды, ζ – электрокинетический потенциал.

  1. Теплоты физической адсорбции и смачивания

  1. Поверхностное и пограничное натяжение

ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ, стремление в-ва (жидкости или твердой фазы) уменьшить избыток своей потенциальной энергии на границе раздела с др. фазой (поверхностную энергию). Определяется как работа, затрачиваемая на создание единицы площади пов-сти раздела фаз (размерность Дж/м2). Согласно др. определению, поверхностное натяжение-сила, отнесенная к единице длины контура, ограничивающего пов-сть раздела фаз (размерность Н/м); эта сила действует тангенциально к пов-сти и препятствует ее самопроизвольному увеличению.

Поверхностное натяжение-осн. термодинамич. характеристика поверхностного слоя жидкости на границе с газовой фазой или др. жидкостью. Поверхностное натяжение разл. жидкостей на границе с собств. паром изменяется в широких пределах: от единиц для сжиженных низкокипящихгазов до неск. тыс. мН/м для расплавл. тугоплавких в-в. Поверхностное натяжение зависит от т-ры. Для мн. однокомпо-нентных неассоциир.жидкостей (вода, расплавы солей, жидкие металлы) вдали от критич. т-ры хорошо выполняется линейная зависимость:

где s и s0-поверхностное натяжение при т-рах T и T0 соотв., a 0,1 мН/(м·К)-температурный коэффициент поверхностного натяжения. Осн. способ регулирования поверхностного натяжения заключается в использовании поверхностно-активных веществ (ПАВ).

Поверхностное натяжение входит во мн. ур-ния физики, физ. и коллоидной химии, электрохимии. Оно определяет след. величины: 1) капиллярноедавление   , где r1 и r2 -главные радиусы кривизны пов-сти, и давление насыщ. пара рr над искривленной пов-стью жидкости:  , где r-радиус кривизны пов-сти, R -газовая постоянная, Vn-молярный объем жидкости, p0- давление над плоской пов-стью (законы Лапласа и Кельвина, см. Капиллярные явления).

2) Краевой угол смачивания   в контакте жидкости с пов-стью твердого тела: cos  , где  -уд. своб. поверхностные энергиитвердого тела на границе с газом и жидкостью,  -поверхностное натяжение жидкости (закон Юнга, см. Смачивание).

3) Адсорбцию ПАВ   где m-хим. потенциал адсорбируемого в-ва (ур-ние Гиббса, см. Адсорбция). Для разб. р-ров  где с-молярная концентрация ПАВ.

4) Состояние адсорбц. слоя ПАВ на пов-сти жидкости: (ps + a/A2)·(A - b)= kT, где ps = (s0  s) - двухмерное давление, s0 и <т-соответственно поверхностное натяжение чистой жидкости и той же жидкости при наличии адсорбц. слоя, а -постоянная (аналог постоянной Ван-дер-Ваальса), A-площадь поверхностного слоя, приходящаяся на одну адсорбир. молекулу, b -площадь, занимаемая 1 молекулой жидкости, k -постоянная Больцмана (ур-ние Фрумкина-Фольмера, см. Поверхностная активность).