Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
274_vfv.docx
Скачиваний:
65
Добавлен:
15.11.2019
Размер:
11.88 Mб
Скачать
  1. Электродиализ

Электродиализ - процесс мембранного разделения, в котором ионы растворенного вещества переносятся через мембрану под действием электрического поля. Движущей силой процесса является градиент электрического потенциала. Под действием электрического поля катионы перемещаются по направлению к отрицательному электроду (катоду). Анионы движутся по направлению к положительно заряженному электроду (аноду). Электрическое поле не оказывает влияния на незаряженные молекулы. При использовании проницаемых для ионов неселективных мембран можно разделять электролиты и неэлектролиты. Применяя катионообменные или анионообменные мембраны, при помощью электродиализа можно повысить или понизить концентрацию раствора электролита. Матрица анионообменной мембраны имеет катионные группы. Заряд катионов нейтрализован зарядом подвижных анионов, находящихся в порах мембраны. Анионы раствора электролита могут внедряться в матрицу мембраны и замещать первоначально присутствующие в ней анионы. Проникновению в мембрану катионов препятствуют силы отталкивания их фиксированными в матрице мембраны катионами. Аналогичным образом действуют и катионообменные мембраны, содержащие фиксированные анионные группы. В многокамерном электродиализаторе чередуется большое число (до нескольких сотен) катионообменных и анионообменных мембран, расположенных между двумя электродами Рис. 1. Электрический ток переносит катионы из исходного раствора в поток концентрата через катионообменную мембрану, расположенную со стороны катода. Катионы задерживаются в этом потоке анионообменной мембраной со стороны катода. Направление движения анионов является противоположным. Они переносятся в поток концентрата через анионообменную мембрану. Со стороны анода анионы задерживаются в потоке концентрата катионообменной мембраной. Таким образом, общий результат процесса заключается в увеличении концентрации ионов в чередующихся камерах при одновременном уменьшении их концентрации в других камерах. На электродах протекает процесс электролиза. В многокамерном аппарате неизбежные непроизводительные затраты электроэнергии, обусловленные этим процессом, распределяются на большое число камер. Поэтому в расчете на единицу продукции эти затраты сводятся к минимуму.

Рис.1. Процесс электродиализа (мембранного электролиза): А - анионообменные мембраны, К - катионообменные мембраны

  1. Флотация

Флота́ция (фр.  flottation, от flotter — плавать) — процесс разделения мелких твёрдых частиц (главным образом, минералов), основанный на различии их в смачиваемости водой.Гидрофобные (плохо смачиваемые водой) частицы избирательно закрепляются на границе раздела фаз, обычно газа и воды, и отделяются от гидрофильных (хорошо смачиваемых водой) частиц. При флотации пузырьки газа или капли масла прилипают к плохо смачиваемым водой частицам и поднимают их к поверхности.

Разновидности процесса Широкое применение флотации привело к появлению большого числа разновидностей процесса.

Пенная флотация - наиб. распространенный способ флотации, к-рым в мире ежегодно обогащают 1 млрд. т горной массы -более 20 типов руд. Первый патент на этот способ был выдан братьям Адольфу и Артуру Бесселям (Германия, 1877). Согласно патенту, частицы графита, закрепившиеся на газовых пузырьках, образующихся при кипячении суспензии (пульпы), всплывали на пов-сть жидкости и выводились из зоны разделения. В дальнейшем для увеличения числа и суммарной пов-сти пузырьков такой способ их образования заменили принудит. подачей газа(обычно воздуха) в аппарат для разделения - флотац. машину.

Ф и з.- х и м. основы. Применительно к пенному режиму флотация осуществляется в трехфазной среде "твердые частицы -жидкость - газ", наз. пульпой. Твердая фаза представлена частицами минералов, получаемых при дроблении и помоле руды с целью выделения полезных компонентов из сростков с минералами пустой породы; тяжелые минералы измельчают до крупности 0,1-0,2 мм, легкие (угольсерафосфаты и др.) - до 0,2-3 мм. Жидкая фаза содержит воду, продукты выщелачивания минералов, флотореагенты, растворенные газы, продукты износа оборудования, коллоидные частицы и т. д. Газовая фаза состоит из пузырьков (размеры от десятков мкм до 1-2 мм), образующихся при прохождении воздуха через диспергирующее устройство (аэратор). Положит. роль во флотации могут играть газовые пузырьки, выделяющиеся из р-ра.

Сущность элементарного акта флотации заключается в следующем. При сближении в водной среде пузырька газа и гидрофобной пов-сти минеральной частицы (см. Лиофильность и лиофобность), адгезия к-рой к воде меньше когезии воды, разделяющая их водная прослойка при достижении нек-рой критич. толщины становится неустойчивой и самопроизвольно прорывается. Этот этап завершается полным смачиваниемчастицы, обеспечивающим прочное слипание пузырька и частицы. Вследствие того, что плотность комплексов, или агрегатов "пузырьки - частицы", меньше плотности пульпы, они всплывают (флотируют) на ее пов-сть и образуют пенный минерализованный слой, к-рый удаляется из флотац. машины.

Известно неск. модификаций пенной флотации: вакуумная, фло-тогравитация, ионная, электрофлотация, флотация с выделением CO2пенная сепарация.

Вакуумная флотация. По этому способу, предложенному Ф. Элмором (Великобритания, 1906), жидкость, содержащая твердые частицы, насыщаетсягазом, к-рый при понижении давления выделяется из нее в виде мелких пузырьков на пов-сти гидрофобных частиц.

Флотогравитация - комбинир. процесс обогащения полезных ископаемых, совмещающий флотацию и разделение мелких твердых частиц под действием силы тяжести или в поле центробежных сил. Процесс проводят в спец. аппаратах (концентрационные столы, винтовые сепараторы, ленточные шлюзы, концентраторы, осадочные машины). В них благодаря обработке пульпы флотореагентами и введению в нее пузырьков воздухаобразуются т. наз. аэрофлокулы определенных минералов, имеющие меньшую плотность, чем частицы, не взаимодействующие с воздушными пузырьками. Создаваемое при этом различие в плотности способствует более эффективному разделению частиц минералов, в т. ч. меньшей крупности, чем при обычном гравитац. обогащении. В пром-сти флотогравитацию используют для выделения сульфидных минералов из вольфрамовых и оловянных концентратов, а также для отделения циркона от пирохлора, шеелита от касситерита и др.

Ионная флотация разработана в 50-х гг. 20 в. (Ф. Себба, ЮАР) для очистки воды, а также извлечения полезных компонентов из разб. р-ров. Отдельные ионымолекулы, тонкодисперсные осадки и коллоидные частицы взаимод. с флотореагентами-собирателями, обычно катион-ного типа, и извлекаются пузырьками газа в пену либо пленку на пов-сти р-ра. Способ перспективен для переработки пром. стоков, минерализов. подземных термальных и шахтных вод и морской воды.

Электрофлотация. Для ее проведения используют пов-сть пузырьков водорода и кислорода, выделяющихся при электролитич. разложении воды.

Предложен также способ флотации, согласно к-рому в пульпу вводят пузырьки CO2, образующегося в результате хим. р-ции.

Другие способы флотации. Среди всех способов первой была предложена (1860) масляная флотация (В. Хайнс, Великобритания). Для ее осуществления измельченную руду перемешивают с минеральным маслом и водой; при этом сульфидные минералы селективно смачиваютсямаслом, всплывают вместе с ним и удаляются с пов-сти воды, а пустые породы (кварцполевой шпат и др.) осаждаются. В России масляная флотация была применена для обогащения графитовой руды (Мариуполь, 1904). В дальнейшем этот способ усовершенствовали: маслодиспергировали до эмульсионного состояния, что позволило извлекать тонкие шламы, напр. марганцевых руд.

Способность гидрофобных минеральных частиц удерживаться на пов-сти воды, в то время как гидрофильные частицы в ней тонут, была использована А. Нибелиусом (США, 1892) и А. Мак-Куистеном (Великобритания, 1904) для разработки пленочной флотации. В этом процессе из тонкого слоя измельченной руды, находящегося на пов-сти потока воды, выпадают гидрофильные частицы.