
- •Билет № 1
- •Принципы классификации дисперсных систем
- •Потенциал и ток течения
- •Поверхностно-активные вещества и их классификация
- •Билет № 2
- •Молекулярно-кинетические свойства дисперсных систем
- •Электрофорез
- •Адсорбционный потенциал
- •Билет № 3
- •Билет 3. Седиментация суспензий и седиментационно-диффузионное равновесие
- •Электроосмос
- •Теория быстрой коагуляции Смолуховского
- •1. Оптические свойства дисперсных систем
- •2. Зависимость ψ1-потенциала от концентрации электролита
- •3. Правило уравнивания полярностей Ребиндера
- •Билет № 5
- •Билет № 6
- •Строение двойного электрического слоя (дэс) на границе раздела твердое тело – жидкость. Потенциалы дэс.
- •Защитное действие растворов высокомолекулярных соединений
- •Билет № 7
- •Билет 7. Химический потенциал и давление пара у искривленных поверхностей
- •Механизмы образования двойного электрического слоя на поверхности твердых тел
- •Влияние многозарядных ионов на устойчивость гидрофобных коллоидов
- •Билет № 8
- •Уравнение адсорбции Гиббса
- •Числа переноса ионов в капиллярных системах
- •Электрокинетический потенциал и его роль в устойчивости гидрофобных коллоидов
- •Билет 9. Изотерма адсорбции Ленгмюра (адсорбция на границе раздела раствор - газ)
- •Основные положения теории двойного электрического слоя Гуи-Чепмена, модифицированной теории Гуи, теории Штерна.
- •Лиофильные коллоидные системы
- •Билет № 10
- •Поверхностные пленки нерастворимых веществ
- •Индифферентные и специфически сорбирующиеся электролиты. Влияние на устойчивость гидрофобных коллоидов
- •3. Поверхностная проводимость
- •Билет № 11
- •Адсорбция на поверхности твердых тел. Теплоты адсорбции и смачивания
- •Методы определения размеров частиц
- •Приведенная толщина диффузного слоя; зависимость от вида электролита
- •Билет № 12
- •Теория адсорбции Ленгмюра (граница раздела твердое тело – газ или пар)
- •Электрокинетический потенциал; влияние концентрации электролита и заряда противоиона
- •Поверхностное натяжение и способы его определения
- •Билет № 13
- •Теория адсорбции Поляни
- •Коллоидно-химические основы охраны окружающей среды
- •Электрокинетический потенциал
- •Билет № 14
- •Теория адсорбции Брунауэра – Эммета – Теллера
- •Высокомолекулярные электролиты
- •Правило уравнивания полярностей Ребиндера
- •Билет № 15
- •Адсорбция неэлектролитов на границе раздела твердое тело – жидкость (молекулярная адсорбция)
- •Мицеллообразование в водных и неводных средах.
- •Изоэлектрическая точка и точка нулевого заряда
- •Билет № 16
- •Адсорбция электролитов на границе раздела твердое тело – жидкость и возникновение двойного электрического слоя
- •Структурно-механические свойства дисперсных систем
- •Защитное действие растворов высокомолекулярных соединений
- •Билет № 17
- •Электрокапиллярные явления
- •Влияние электролитов на устойчивость гидрофобных коллоидов. Роль -потенциала
- •Поверхностная активность
- •Билет № 18
- •Теория двойного электрического слоя Гуи – Чепмена
- •Электродиализ
- •Флотация
- •Билет № 19
- •Теория двойного электрического слоя Штерна
- •Работа адсорбции. Правило Траубе
- •Основные факторы устойчивости гидрофобных коллоидов
- •Билет № 20
- •Параметры дэс и их зависимость от концентрации электролита
- •Электроосмос
- •Устойчивость лиофильных и лиофобных коллоидных систем
- •Билет № 21
- •Билет 21. Электрокинетические явления
- •Капиллярная конденсация
- •Адсорбционный потенциал
- •Билет № 22
- •Потенциал и ток течения
- •Теплоты физической адсорбции и смачивания
- •Поверхностное и пограничное натяжение
- •Билет № 23
- •Электрокинетический потенциал. Влияние концентрации электролита и вида противоиона
- •Уравнение состояния поверхностного слоя разбавленных растворов
- •Критическая концентрация мицеллообразования (ккм)
- •Билет № 24
- •Потенциалы двойного электрического слоя. Зависимость от концентрации электролита
- •Работа адсорбции. Правило Траубе
- •Пептизация
- •Билет № 25
- •Электрокинетические свойства капиллярных систем
- •Поверхностно-активные и поверхностно-инактивные вещества
- •Изоэлектрическая точка и точка нулевого заряда
- •Билет № 26
- •Билет 26. Методы получение и очистки дисперсных систем
- •Изменение уровня жидкости в капиллярах
- •Правило Шульце - Гарди
- •Билет № 27
- •Теория быстрой коагуляции Смолуховского
- •Критическое сопоставление теорий адсорбции газов и паров твердыми телами
- •Числа переноса ионов в капиллярных системах
- •Билет № 28
- •Поверхностное натяжение жидкостей
- •Теория устойчивости гидрофобных коллоидов Дерягина – Ландау – Фервея – Овербека
- •3. Правило уравнивания полярностей Ребиндера
- •Билет № 29
- •Специфика коллоидного состояния вещества
- •Коагулирующее действие электролитов
- •Капиллярное давление
Изоэлектрическая точка и точка нулевого заряда
Изоэлектрическая точка (ИЭТ)- Характеристика состояния пов-сти частиц дисперсной фазы, при к-ром электрокинетич. потенциал (x) равен нулю. В ИЭТ не наблюдаются электрокинетические явления. В дисперсных системах электрич. заряд пов-сти частиц обусловлен либо частичной диссоциацией поверхностных ионогенных групп, либо адсорбцией из р-ра потенциалопределяющих ионов. Вблизи заряженной пов-сти образуется двойной электрический слой, в одной части к-рого (внутр. обкладка) у межфазной пов-сти располагаются потенциалопределяющие ионы, а в другой, внешней, - противоионы. В зависимости от концентрации потенциалопределяющих ионов и специфически адсорбирующихся противоионов значение электрокинетич. потенциала x может меняться от положительного до отрицательного, равняясь нулю в ИЭТ. Для определения ИЭТ дисперсных систем строят график зависимости x от концентрации р-ра; точка пересечения кривой x (lg c) с осью абсцисс соответствует ИЭТ. Коллоидные системы в ИЭТ неустойчивы и легко коагулируют. В отсутствие специфич. адсорбции противоионов ИЭТ совпадает с потенциалом нулевого заряда пов-сти. По величине ИЭТ можно судить о степени чистоты пов-сти, а также рассчитать величины адсорбц. потенциалов.
(←Электрокапиллярная кривая)Точка нулевого заряда (ТНЗ) — электрохимическая характеристика поверхности вещества, например AgI, в определенной среде, например в растворе электролита. Она указывает условие, при котором поверхность вещества в данной среде незаряжена.
Величина удельного (на единицу площади поверхности вещества) заряда поверхности, которая также называется поверхностной плотностью заряда, зависит от многих факторов. Среди них важнейшими являются концентрация потенциалопределяющих (ПО) ионов и величина внешней разности потенциалов, подведенной к веществу и той среде, в которой оно находится. В последнем случае вещество исполняет роль одного из электродов электрохимической ячейки. Соответственно этому нулевую величину заряда поверхности можно обеспечить, изменяя концентрацию подходящего электролита, и тогда ТНЗ — это концентрация ПО иона, при которой поверхность не заряжена. Нулевую величину заряда можно также обеспечить, подавая на электрод, изготовленный из исследуемого вещества, электрический потенциал, противоположный по знаку собственному потенциалу вещества в данной среде. В этом случае ТНЗ — это величина внешней разности потенциалов, подведенной к веществу и среде, которую более однозначно можно назвать потенциалом нулевого заряда (ПНЗ). Одно и то же вещество может иметь бесчисленное множество потенциалов нулевого заряда, поскольку ПНЗ является также и функцией состава среды. По этой причине ПНЗ не представляет интереса как электрохимическая характеристика вещества. В большей мере он характеризует адсорбционную способность (потенциал) ПО ионов к поверхности данного вещества. Перечень веществ, на которых можно измерять ПНЗ, практически ограничен одной ртутью, и поэтому этим методом можно изучать адсорбционную способность тех или иных ионов только на поверхности ртути. Такие данные представляют ограниченный интерес и далее не рассматриваются. В отличие от этого концентрационная ТНЗ является характеристикой вещества по отношению к любым ионам. Однако фундаментальный интерес представляет значение точки нулевого заряда по отношению к ионам, которые образуют изучаемое вещество, например к ионам Ag+ и I–, если речь идет о ТНЗ иодида серебра AgI.