
- •В.М. Васюков
- •Курс лекций
- •Часть I. Теоретическая химия
- •Глава 1. Основные понятия и законы химии
- •Основные понятия химии
- •Основные положения атомно-молекулярной теории
- •Газовые законы
- •Глава 2. Строение атома и периодический закон Модели строения атома
- •Квантовые числа электронов
- •Электронные конфигурации атомов
- •Ядро атома и радиоактивные превращения
- •Периодический закон
- •Глава 3. Химическая связь Валентность и степень окисления
- •Ковалентная связь
- •Ионная связь
- •Металлическая связь
- •Межмолекулярные взаимодействия
- •Глава 4. Комплексные соединения
- •Глава 5. Состояние вещества
- •Глава 6. Физико-химические закономерности протекания химических реакций Химическая термодинамика
- •Химическая кинетика и катализ
- •Обратимые и необратимые реакции. Состояние химического равновесия
- •Глава 7. Физико-химическая теория растворов электролитов и неэлектролитов Механизм образования растворов и их классификация
- •Идеальные и реальные растворы. Растворение как физико-химический процесс
- •Зависимость растворимости различных веществ от природы растворителя, температуры и давления
- •Законы разбавленных растворов
- •Способы выражения концентрации (состава) растворов
- •Электролиты и электролитическая диссоциация
- •Гидролиз солей
- •Глава 8. Дисперсные системы
- •Классификации дисперсных систем
- •Оптические и молекулярно-кинетические свойства дисперсных систем
- •Поверхностные и адсорбционные явления
- •Коллоидные (коллоидно-дисперсные) системы
- •Глава 9. Теория окислительно-восстановительных процессов Окислительно-восстановительные реакции
- •Химические источники электрической энергии. Электродные потенциалы
- •1) Металлы, обладающие более электроотрицательным потенциалом, способны вытеснить менее активные металлы (с более положительным потенциалом) из водных растворов их солей;
- •Коррозия металлов
- •Электролиз
- •Восстанавливается вода Восстанавливается вода и катионы металла Восстанавливается катионы металла
- •Глава 10. Качественный и количественный анализ веществ
- •Качественный анализ
- •Классификация катионов на аналитические группы
- •Классификация анионов на аналитические группы
- •Количественный анализ
- •Химические методы анализа
- •Физические и физико-химические методы анализа
- •Часть II. Неорганическая химия
- •Глава 11. Важнейшие классы неорганических соединений
- •Основания (гидроксиды металлов)
- •Кислоты
- •Глава 12. Элементы I группы
- •Водород
- •Глава 13. Элементы II группы
- •Бериллий
- •Глава 14. Элементы III группы
- •Алюминий
- •Лантаноиды
- •Актиноиды
- •Глава 15. Элементы IV группы
- •Углерод
- •Кремний
- •Глава 16. Элементы V группы
- •Глава 17. Элементы VI группы
- •Кислород
- •Глава 18. Элементы VII группы
- •Глава 19. Элементы VIII группы
- •Часть III. Органическая химия Глава 20. Общая характеристика органических соединений
- •Теория строения органических соединений
- •Атомы в молекулах соединены между собой в определенном порядке химическими связями согласно их валентности; углерод во всех органических соединениях четырехвалентен.
- •Свойства вещества определяются не только качественным составом, но и его строением, взаимным влиянием атомов, как связанных между собой химическими связями, так и непосредственно не связанных.
- •Строение молекул может быть установлено на основе изучения их химических свойств.
- •Формулы органических соединений
- •Классификация органических соединений
- •Номенклатура органических соединений
- •Изомерия органических соединений
- •Взаимное влияние атомов в молекуле и реакционная способность органических соединений
- •Общая характеристика органических реакций
- •Промышленное производство органических соединений
- •Глава 21. Алканы Номенклатура и изомерия
- •Физические свойства
- •Способы получения
- •Химические свойства
- •Применение
- •Глава 22. Циклоалканы Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Глава 23. Алкены (олефины) Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Глава 24. Алкадиены (диеновые углеводороды) Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Глава 25. Алкины (ацетилены) Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Глава 26. Ароматические углеводороды (арены) Номенклатура и изомерия
- •Физические свойства
- •Способы получения
- •Химические свойства
- •Правила ориентации (замещения) в бензольном кольце
- •Применение
- •Глава 27. Гидроксильные соединения (спирты)
- •Одноатомные спирты (алкоголи) Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Многоатомные спирты
- •Получение
- •Химические свойства
- •Применение
- •Физические свойства
- •Способы получения
- •Химические свойства
- •Применение
- •Глава 28. Карбонильные соединения (оксосоединения) Номенклатура и изомерия
- •Метаналь этаналь
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Глава 29. Карбоновые кислоты Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Глава 30. Сложные эфиры. Жиры Номенклатура и изомерия
- •Физические свойства
- •Химические свойства
- •Жиры и масла
- •Глава 31. Углеводы (сахара)
- •Моносахариды Номенклатура и изомерия
- •Физические и химические свойства глюкозы
- •Дисахариды
- •Полисахариды
- •Глава 32. Амины
- •Предельные алифатические амины Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Ароматические амины
- •Физические свойства
- •Химические свойства
- •Применение
- •Глава 33. Аминокислоты, пептиды и белки
- •Аминокислоты Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Пептиды
- •Физические свойства
- •Химические свойства
- •Биологическое значение белков
- •Глава 34. Гетероциклические соединения
- •Шестичленные гетероциклы
- •Пятичленные гетероциклы
- •Нуклеиновые кислоты Строение нуклеиновых кислот
- •Биологическая роль нуклеиновых кислот
- •Глава 35.Синтетические высокомолекулярные соединения
- •Общая характеристика полимеров
- •Пластмассы
- •Волокна
- •Каучуки
- •Литература
- •Приложения Растворимость неорганических веществ в воде при 25°c
Глава 10. Качественный и количественный анализ веществ
Аналитическая химия – наука о методах определения химического состава и структуры веществ.
Химический анализ лежит в основе современного химико-технологического контроля и установления государственных стандартов на выпускаемую продукцию.
Качественный анализ
Задача качественного анализа – определение химического состава исследуемого соединения.
Качественный анализ проводят химическими, физическими и физико-химическими методами. Физические и физико-химические методы анализа основаны на измерении какого-либо параметра системы, который является функцией состава. Так, в спектральном анализе исследуют спектры излучения, возникающие при внесении вещества в пламя горелки.
Химические методы качественного анализа основаны на превращении анализируемого вещества в новые соединения, обладающие определенными свойствами. По образованию характерных соединений элементов и устанавливается элементарный состав вещества. Так, ионы Cu2+ можно обнаружить по образованию комплексного иона [Cu(NH3)4]2+ лазурно-синего цвета. Катион NH4+ обнаруживают по выделению газообразного аммиака NH3 действие раствора щелочи при нагревании.
Качественные аналитические реакции по способу их выполнения делятся на реакции «мокрым» и «сухим» путем. Наибольшее значение имеют реакции «мокрым» путем. Для проведения их исследуемое вещество должно быть предварительно растворено. В качественном анализе находят применение только те реакции, которые сопровождаются какими-либо хорошо заметными внешними эффектами: изменением окраски раствора, выпадением или растворением осадка, выделением газов с характерным запахом или цветом и т.п. Особенно часто применяются реакции, сопровождающиеся образованием осадков и изменением окраски раствора. Такие реакции называются реакциями «открытия», т.к. с их помощью обнаруживаются присутствующие в растворе ионы. Для отделения одной группы ионов от другой или одного иона от другого применяются реакции осаждения.
В зависимости от количества анализируемого вещества, объема раствора и техники выполнения отдельных операций химические методы качественного анализа делятся на макро- (1-10 г или 10-100 мл исследуемого вещества), полумикро- (0,05-0,5 г или 1-10 мл), микро- (0,001-10–6 г или 0,1-10–4 мл), и ультрамикроанализ и др.
Анализ «сухим» путем проводится с твердыми веществами. Он делиться на анализ методом растирания и пиротехнический анализ. Последний основан на утем проводится с твердыми веществами. тдельных операций химические методы качественного анализа делятся на макро-, микро-, полнагревании исследуемого вещества в пламени горелки. Рассмотрим реакции окрашивания пламени – летучие соли многих металлов при внесении их в несветящуюся часть пламени горелки окрашивают пламя в различные цвета, характерные для этих металлов: Li и Sr – карминово-красная окраска пламени, Na – интенсивно-желтая, K – фиолетовая, Rb и Сs – розово-фиолетовая, Ca – оранжево-красная, Ba – зеленая, Cu и B – желто-зеленая, Pb и As – бледно-голубая и т.д.
Чувствительность аналитических реакций – то наименьшее количество вещества (иона), которое можно открыть с помощью данного реагента. Количественно чувствительность реакций характеризуется тремя показателями: открываемым минимумом, предельной концентрацией, пределом разбавления.
В аналитической практике определяемый ион обычно приходится открывать в присутствии других ионов. Реакции и реагенты, дающие возможность открывать данный ион в присутствии других, называются специфичными.