Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МАГИСТРЫ ЭКЗАМЕН сокращение.doc
Скачиваний:
22
Добавлен:
06.11.2019
Размер:
2.51 Mб
Скачать

15. Методы термической обработки

Термическая обработка металлов и сплавов производится с целью улучшения их служебных свойств.

Виды термической обработки

  • Отжиг (гомогенизация и нормализация). Целью является получение однородной зёренной микроструктуры и растворение включений. Последующее охлаждение является медленным, препятствующим образованию неравновесных структур типа мартенсита.

  • Дисперсионное твердение (старение). После проведения отжига проводится нагрев на более низкую температуру с целью выделения частиц упрочняющей фазы. Иногда проводится ступенчатое старение при нескольких температурах с целью выделения нескольких видов упрочняющих частиц.

  • Закалку проводят с повышенной скоростью охлаждения с целью получения неравновесных структур типа мартенсита. Критическая скорость охлаждения, необходимая для закалки зависит от материала.

  • Отпуск необходим для снятия внутренних напряжений, внесённых при закалке.

Материал становится более пластичным при некотором уменьшении прочности.

Примеры

Гомогенизационный отжиг + старение Например, для суперсплавов на базе никеля (типа «Инконель 718») типичной является следующая термическая обработка: Гомогенизация структуры и растворение включений (англ. Solution Heat Treatment) при 768 — 782°С с ускоренным охлаждением. Затем производится двухступенчатое старение (англ. Precipitation Heat Treatment) — 8 часов при температуре 718°С, медленное охлаждение в течение 2 часов до 621 — 649 °С и выдержка в течение 8 часов. Затем следует укскоренное охлаждение. Закалка + отпуск Многие стали проходят упрочнение путём закалки — ускоренного охлаждения (на воздухе, в масле или в воде). Быстрое охлаждение приводит, как правило, к образованию неравновесной мартенситной структуры. Сталь непосредственно после закалки отличается высокой твёрдостью, остаточными напряжениями, низкой пластичностью и вязкостью. Так, сталь 40ХНМА (SAE 4340) сразу после закалки имеет твёрдость выше 50 HRC, в таком состоянии материал непригоден для дальнейшего использования из-за высокой склонности к хрупкому разрушению. Последующий отпуск — нагрев до 450°С — 500°С и выдержка при этой температуре приводят к уменьшению внутренних напряжений за счёт распада мартенсита закалки, уменьшения степени тетрагональности его кристаллической решётки (переход к отпущенному мартенситу). При этом твёрдость стали несколько уменьшается (до 45 — 48 HRC).

16. Формирование защитных покрытий

Наиболее простой и доступной защитой от коррозии является нанесение покрытий на основе лакокрасочных материалов (ЛКМ). Основными компонентами, входящими в состав ЛКМ, являются пленкообразующие вещества, растворители, пигменты и наполнители (как правило барьерного типа), катализаторы (сиккативы) и др. При этом тип пленкообразующего вещества во многом определяет свойства покрытия.

В настоящее время существует широкий ассортимент современных защитных полимерных покрытий, отвечающих предъявляемым требованиям. Среди них наибольшее распространение находят эпоксидные и полиуретановые основы ЛКМ. Хотя они и более дорогостоящие, зато обеспечивают формирование защитных покрытий с высокими атмосферо-, водо-, абразиво-, морозо- и термостойкими свойствами, а также высокую адгезию к металлу.

Разработана технология формирования защитных покрытий методом микроплазменного оксидирования металлов. В качестве электролита используются слабые щелочные и кислые водные растворы. Микроплазменные покрытия состоят из поликристаллических высокотемпературных оксидов, образующих ячеистую градиентную структуру, вследствие чего обеспечивают высокие физико-химические и механические свойства. Предлагаемая технология позволяет формировать защитные покрытия на алюминии, титане, ниобии, цирконии, тантале, их сплавах и графите.

Способ формирования защитных покрытий инструментальных сталей включает механическую обработку (токарную, фрезерную и др. операции) детали, электролитическую полировку в течение 2 мин при плотности тока 18-25 А/дм2, потом в той же ванне проведение анодирования в течение 8-10 мин при плотности тока 1,8-2,5 А/дм2, при этом выдерживаются соотношения токов 10:1 и температура электролита 75-80oC.