Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МАГИСТРЫ ЭКЗАМЕН сокращение.doc
Скачиваний:
21
Добавлен:
06.11.2019
Размер:
2.51 Mб
Скачать

12. Сопротивление трения и давления

Силу, которая противодействует первоначальному сдвигу предмета, называют силой трения покоя. Хотя нагляднее её называть силой сопротивления. Например, моей попытке сдвинуть гору мешает сила сопротивления. А попробуйте сказать, что сдвинуть гору вам мешает сила трения покоя? По-моему будет звучать нелепо. Ведь о газах говорят правильно – сопротивление газов. Однако оставим вопросы терминологии…

Именно сила сопротивления является необходимым условием для изменения скорости тела, т.е. для начала движения или для начала торможения. Это как необходимость воздуха для дыхания (условие необходимое, но не достаточное). В процессе движения мы толкаем Землю, а она толкает нас.

Аэродинамическим сопротивлением называют силу (тормозящее воздействие), с которой воздух действует на движущееся в нём тело. Сопротивление воздуха складывается из сопротивления давления и сопротивления трения. Сопротивление давления образуется вследствие разницы давления воздуха перед и за движущимся в нём телом. Эту разницу давлений необходимо преодолевать – что прежде всего относится к тупым телам, например, автомобилям. Для вытянутых тел, как например для самолётов, напротив, основным источником сопротивления является трение воздуха об их боковые поверхности. Между скоростью воздуха (или соотв. тела) и сопротивлением воздуха имеется квадратичная зависимость. Это значит, что при увеличении скорости в 2 раза, сопротивление воздуха увеличивается в 4 раза, а при увеличении скорости в 4 раза сопротивление воздуха увеличивается уже в 16 раз. Конкретный пример: при увеличении скорости автомобиля со 100 км/ч до 141 км/ч сопротивление воздуха удваивается.

13.Понятие о пограничном слое.

Пограничный слой, область течения вязкой жидкости (газа) с малой по сравнению с продольными размерами поперечной толщиной, образующаяся у поверхности обтекаемого твёрдого тела или на границе раздела двух потоков жидкости с различными скоростями, температурами или химическим составом. Пограничный слой характеризуется резким изменением в поперечном направлении скорости (динамический пограничный слой), или температуры (тепловой, или температурный, пограничный слой), или же концентраций отдельных химических компонентов (диффузионный, или концентрационный, пограничный слой). На формирование течения в пограничном слое основное влияние оказывают вязкость, теплопроводность и диффузионная способность жидкости (газа). Внутри динамического пограничного слоя происходит плавное изменение скорости от её значения во внешнем потоке до нуля на стенке (вследствие прилипания вязкой жидкости к твёрдой поверхности). Аналогично внутри пограничного слоя плавно изменяются температура и концентрация.   Режим течения в динамическом пограничном слое зависит от Рейнольдса числа Re и может быть ламинарным или турбулентным. При ламинарном режиме отдельные частицы жидкости (газа) движутся по траекториям, форма которых близка к форме обтекаемого тела или условной границы раздела между двумя жидкими (газообразными) средами. При турбулентном режиме в пограничном слое на некоторое осреднённое движение частиц жидкости в направлении основного потока налагается хаотическое, пульсационное движение отдельных жидких конгломератов. В результате интенсивность переноса количества движения, а также процессов тепло- и массопереноса резко увеличиваются, что приводит к возрастанию коэффициента поверхностного трения, тепло- и массообмена. Значение критического числа Рейнольдса, при котором происходит переход в пограничный слой ламинарного течения в турбулентное, зависит от степени шероховатости обтекаемой поверхности, уровня турбулентности внешнего потока, Маха числа М и некоторых др. факторов. При этом переход ламинарного режима течения в турбулентный с возрастанием Re происходит в пограничном слое не внезапно, а имеется переходная область, где попеременно чередуются ламинарный и турбулентный режимы.   Толщина d динамического Пограничного слоя определяется как то расстояние от поверхности тела (или от границы раздела жидкостей), на котором скорость в пограничном слое можно практически считать равной скорости во внешнем потоке. Значение d зависит главным образом от числа Рейнольдса, причём при ламинарном режиме течения d ~ l×Re-0.5, а при турбулентном — d ~ l×Re-0.2, где l — характерный размер тела.   Развитие теплового пограничного слоя определяется, помимо числа Рейнольдса, также Прандтля числом, которое характеризует соотношение между толщинами динамического и теплового пограничного слоя. Соответственно на развитие диффузионного пограничного слоя дополнительное влияние оказывает диффузионное число Прандтля, или Шмидта число.   При больших скоростях внешнего потока газа внутри пограничного слоя происходит переход кинетической энергии молекул в тепловую, вследствие чего локальная температура газа увеличивается. В случае теплоизолированной поверхности температура газа в пограничном слое может приближаться к температуре торможения , где Te температура газа вне пограничного слоя, k = cp/cv отношение теплоёмкостей при постоянном давлении и постоянном объёме.   Характер течения в пограничном слое оказывает решающее влияние на отрыв потока от поверхности обтекаемого тела. Причина этого заключается в том, что при наличии достаточно большого положительного продольного градиента давления кинетическая энергия заторможенных в пограничном слое частиц жидкости становится недостаточной для преодоления сил давления, течение в Пограничном слое теряет устойчивость и возникает т. н. отрыв потока.   При очень больших числах Рейнольдса толщина пограничного слоя очень мала по сравнению с характерными размерами тела. Поэтому почти во всей области течения, за исключением тонкого пограничного слоя, влияние сил вязкости несущественно по сравнению с инерциальными силами, и жидкость в этой области можно рассматривать как идеальную. Одновременно вследствие малой толщины пограничного слоя давление в нём в поперечном направлении можно практически считать постоянным. В результате весьма эффективным оказывается такой метод изучения обтекания тел потоком жидкости (газа), когда всё поле течения разбивается на 2 части — область течения идеальной жидкости и тонкий пограничный слой у поверхности тела. Течение в первой области изучается с помощью уравнений движения идеальной жидкости, что позволяет определить распределение давления вдоль поверхности тела; тем самым определяется и давление в пограничном слое. Течение внутри пограничного слоя рассчитывается после этого с учётом вязкости, теплопроводности и диффузии, что позволяет определить поверхностное трение и коэффициент тепло- и массообмена. Однако такой подход оказывается неприменимым в явном виде в случае отрыва потока от поверхности тела. Он неприменим и при малых Re, когда влияние вязкости распространяется на довольно большие расстояния от поверхности тела.