Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВМС - ответы.doc
Скачиваний:
163
Добавлен:
27.09.2019
Размер:
3.87 Mб
Скачать

4. Классификация полимеров по происхождению, химическому составу, строению звеньев,структуре макроцепей.

По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтети­ческие, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут распо­лагаться в макромолекуле в виде: откры­той цепи или вытянутой в линию после­довательности циклов (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например поливинилхлорид, поликапроамид, целлюлоза).

Макромолекулы одного и того же хи­мического состава могут быть построены из звеньев различной пространственной конфигура­ции. Если макромолекулы состоят из оди­наковых стереоизомеров или из различ­ных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополиме­ры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присое­динены одна или несколько цепей дру­гого строения. Такие сополимеры называются привитыми.

Полимеры, в которых каждый или некоторые сте­реоизомеры звена образуют достаточно длинные непрерывные последовательно­сти, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых со­держатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее рас­пространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, бел­ки, некоторые кремнийорганические поли­меры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические по­лимеры, например пластическая сера, полифосфонитрилхлорид.

7. Средние молекулярные массы. Методы усреднения и оценки.

МОЛЕКУЛЯРНАЯ МАССА ПОЛИМЕРА (точное назв.-относит. мол. масса полимер.), средняя статистич. величина относит. мол. масс макромолекул, составляющих полимер. Номенклатурными правилами ИЮПАК разрешено также использовать и термин "мол. вес". Определяется видом молекулярно-массового распределения и способом усреднения, т. е. принципом, лежащим в основе метода определения мол. массы (М.м.). В зависимости от способа усреднения различают три осн. типа средних М.м.

С р е д н е ч и с л о в а я (среднечисленная) М. м. (  ) - усреднение по числу макромолекул в полимер.:

где vi-числовая доля макромолекул с мол. массой М,, N- число фракций. Определяют   методами эбулиогра-фии, паровой и мембранной осмометрии. криоскопии. методами определения концевых групп.

С р е д н е м а с с о в а я М.м. (  )-усреднение по массе макромолекул в полимер.: 

где wi -массовая доля макромолекул с мол. массой Мi . Определяют   методами светорассеяния, седиментации и диффузии.

z-С р е д н я я М.м. (  ) выражается ур-нием:

Получают   при измерении седиментац. равновесия.

При больших М.м. суммирование с достаточной степенью надежности можно заменить интегрированием, а усреднения представить в общем виде с q-средними М.м.:

где r(М)-непрерывная дифференц. ф-ция распределения (см. Молекулярно-массовое распределение). При q, равном 1, 2, 3, получают соотв.   . Чем более полидисперсен полимер. т.е. чем шире его ММР, тем больше разнятся между собой эти средние М. м.

Анионной полимер.зацией можно получать полимер., близкие к монодисперсным (полистирол, полидиметилси-локсан, полиэтиленоксид). Для них величина М.м. не зависит от способа усреднения.

Из гидродинамич. параметров, таких, как характеристич. вязкость ([h]), константы седиментации (S0) и диффузии (D0), получают с р е д н е г и д р о д и н а м и ч е с к и е М.м.-   (средневязкостная М. м.),   , и двойные средне-гидродинамические-   (двойная среднемассовая),   и   . Для полидисперсногополимер. они различаются между собой и др. средними М.м. след. образом:

Среднегидродинамические М.м. вычисляют по данным измерения [h] (м3/кг), S0 (с/кг) и D0 (м2/с) на узких фракцияхполимер. по ур-ниям: [h] = Кh Ма (ур-ние Марка-Куна -Хувинка), S0 = KSM1-b, D0 = KDM-b где Кh, KS, KD, а и b-эмпирич. константы, зависящие от размера и формы, которую принимает макромолекула в растворе при заданной температуре и диапазоне М. м., и от природы растворителя.

Двойную среднегидродинамическую М.м. (  ) определяют методами скоростной седиментации и диффузии, а также вычисляют по ур-нию:

здесь u-уд. парциальный объем полимер. в растворе (м3/кг), d-плотность раствора (кг/м3), R-газовая постоянная, Т-т-ра.

Метод седиментац. равновесия позволяет определить   разного типа усреднения, например   . По методу неустановившегося равновесия (метод Арчибальда) и при центрифугировании в градиенте плотности (метод седимен-тац. равновесия) также можно получить средние М.м.

Все перечисл. методы применимы для определения М.м. растворимых полимер.в, макромолекулы которых имеют линейную или слаборазветвленную структуру. Для сильно разветвленных и сетчатых полимер.в понятие М.м. теряет смысл.

М. м. определяет мн. свойства полимер.в. Так, с увеличением М.м. изменяются их свойства, достигающие некоторых предельных значений при высоких М. м. Однако при этом наблюдается значит. рост вязкости расплавов и растворовполимер.в, затрудняющий их переработку. Оптим. значения М. м. полиэтилена составляют 100000-300000, полистирола-300 000-400 000, полиформальдегида - 40 000-150 000.