Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВМС - ответы.doc
Скачиваний:
163
Добавлен:
27.09.2019
Размер:
3.87 Mб
Скачать

15. Кинетическая гибкость макромолекулы. Факторы её определяющие: температура, величина и частота приложенных внешних сил. Кинетический сегмент.

Динамическая (кинетическая) гибкость

Как было сказано выше, соседние углеродные связи одна относительно другой могут занимать одно из положений – транс- или гош-. Время p, которое требуется для перехода из одного энергетического состояния в другое, зависит от высоты энергетического барьера U, разделяющего эти состояния. Если U чуть больше kT – барьер не играет существенной роли и изомеризация (переход из транс-конформера в гош-конформер и обратно) происходит за время 0 ~ 10-11 с. В этом случае цепь динамически гибкая. Если U >> kTp (время перехода) становится экспоненциально большим:

p = 0 exp(U/kT),

где p – персистентное время, 0 – период колебания атомов в молекуле (~10-13 с).

Можно найти молекулы, очень гибкие со статистической точки зрения (т.е. с разность между транс-, гош-переходами << kT), имеющие высокий барьер вращения (например, макромолекулы с гибким остовом и громоздкими боковыми группами). Такие молекулы имеют вид клубка, «замороженного» в одном конформационном состоянии.

Для оценки кинетической гибкости используется механический сегмент  минимальная длина молекулярной цепи полимера, начиная с которой проявляется ее кинетическая гибкость. Длина кинетического сегмента не является постоянной величиной и зависит от скорости воздействия силового поля. При быстрой деформации макромолекула ведет себя как абсолютно жесткая (превращается в один кинетический сегмент), так как не успевает деформироваться.

Перечислим факторы, определяющие кинетическую гибкость макромолекул.

Потенциальный барьер внутреннего вращения. Его значение зависит от величин внутри- и межмолекулярного взаимодействия и определяется строением цепи и химической природой атомов, входящих в нее.

Молекулярная масса полимера. С увеличением молекулярной массы возрастает число возможных конформаций, поэтому даже жесткие цепи (т.е. имеющие высокие потенциальные барьеры внутреннего вращения) могут сворачиваться.

Частота пространственной сетки полимера. Если сшивки расположены редко, то подвижность большинства сегментов может остаться неизменной. С увеличением числа сшивок длина отрезка, сохраняющего гибкость, уменьшается. В сетчатом полимере с очень развитой пространственной структурой гибкость цепей утрачивается.

Размер заместителей. Конформационные превращения цепей, содержащих большие по размерам и по массе заместители, требуют значительного времени и энергии.

Температура. Тепловая энергия увеличивает подвижность сегментов. Пока величина kT меньше значения потенциального барьера внутреннего вращения, звенья цепи совершают крутильные колебания около положений с минимальными значениями энергии. Когда значение kT становится соизмеримо с величиной потенциального барьера вращения, сегменты начинают свободно вращаться друг относительно друга. 

16. См лекции Кулиш в начале.

17. Методы оценки гибкости макромолекул. Хз не знаю

18. Полимерная цепь с объёмными взаимодействиями.Объёмное взаимодействие.

Геометрические размеры задаются с помощью среднеквадратичного расстояния биополимера - h2. Внутренняя пространственная структура задаётся пространственным распределением плотности звеньев. Вследствие объёмного взаимодействия, число звеньев в пространстве может меняться от точки к точке.

В полимерных нитях, вследствие взаимосвязанности звеньев, изменение плотности в одной точке пространства связано с изменением плотности в другой точке, то есть существует пространственная корреляция плотности. Если в макромолекуле отсутствует объёмное взаимодействие, то она не имеет достоверной пространственной структуры. В этом состоянии флуктуация (изменение вероятности) плотности имеет значение того же порядка, что и сама плотность. Такое состояние носит название клубка. Радиус корреляции , то есть характерное расстояние, в пределах которого плотность звеньев резко меняется, становится того же порядка, что и размеры макромолекулы R:

( ~R, R~ , ).

Наличие объёмных взаимодействий может привести к такому состоянию, в котором флуктуация плотности мала по сравнению с самой плотностью. Такое плотное образование называетсяглобулой. В нем радиус корреляции флуктуации плотности намного меньше размеров молекулы  <<R. Глобула в отличие от клубка обладает компактной пространственной структурой. Сердцевина большой глобулы примерно однородна, с постоянной концентрацией звеньев n0.