
- •Учебное пособие основы гидродинамики и теплообмена и их применения в практике содержание
- •Глава 1. Проблемы прогноза процессов переноса при реальных условиях движения сложных сред в трубах ………………………………………………………………………….…………….7
- •Глава 2. Экспериментальные методы исследований. Элементарные понятия, определения теории вероятности и математической статистики в исследовании сплошных сред ….17
- •Глава 3. Понятие о методах изучения сплошных сред и их теплофизичеких свойствах ….. 26
- •Глава 4. Измерения динамических параметров в рабочем теле. Методы и приборы ………32
- •Глава 5. Понятие о реальной и идеальной средах ……………………………………………..51
- •Глава 16. Современные методики расчета детальной гидродинамической картины турбулентного течения смеси в трубопроводах………………………………………………..120
- •Предисловие
- •Глава 1. Проблемы прогноза процессов переноса при реальных условиях движения сложных сред в трубах
- •Введение
- •Связь с дисциплинами физико-математического профиля
- •1.2. Основные этапы развития гидродинамических исследований
- •2. Представления о сопротивлении, как потерях механической энергии при движении жидкости в трубопроводах
- •3. Неустановившиеся течения жидкости
- •4. Проблемы установившихся и неустановившихся течений в трубопроводах
- •5. Учет многокомпонентности состава смеси и фазовых переходов
- •6. Взвесенесущие и газожидкостные потоки
- •Положения теории х.А. Рахматуллина в описании многофазных потоков
- •7. Экспериментальные методы исследований взвесей
- •7.1. Газожидкостные потоки
- •8. Течения неоднородных по плотности потоков в стратифицированных средах
- •9. Моделирование как метод познания
- •10. Актуальность проблемы комплексного физико-математического и численного моделирования теплогидрогазодинамических процессов в технологии транспорта нефти и газа
- •11. Современные достижения в моделировании турбулентных течений с тепломассообменом
- •Глава 2. Экспериментальные методы исследований. Элементарные понятия, определения теории вероятности и математической статистики в исследовании сплошных сред
- •Замечания по математической обработке результатов измерений
- •Основные понятия
- •Понятие о выборке
- •1.3. Математическая обработка результатов опыта
- •1.4. Косвенные измерения
- •2. Современные методы диагностики развивающихся потоков. Лдис оборудование
- •Глава 3. Понятие о методах изучения сплошных сред и их теплофизичеких свойствах
- •1. Феноменологический и статистический методы описания среды
- •2. Проблемы моделирование гидродинамических процессов с средах со сложной структурой и химическими реакциями
- •3. Коэффициенты переноса в рамках статистической теории вязких многокомпонентных инертных и химически реагирующих сред
- •3.1. Некоторые сведения формальной кинетики химических реакций
- •3.2. Переносные свойства реагирующих многокомпонентных систем
- •3.2.2. Коэффициент бинарной диффузии.
- •4. Замечания к формулировке физических свойств континуума в рамках феноменологического метода
- •Глава 4. Измерения динамических параметров в рабочем теле. Методы и приборы
- •1. Измерение давлений
- •2. Измерение скоростей
- •3. Детальные средства изучения среды: лазерный доплеровский измеритель скоростей
- •Глава 5. Понятие о реальной и идеальной средах
- •1. Основные подходы к изучению движения сплошных сред
- •2. Индивидуальная производная
- •3. Напряженное состояние деформируемой среды
- •4. Тензор напряжений
- •4.1. Идеальная жидкость, ее тензор напряжений
- •Вязкая жидкость
- •5.1. Нетеплопроводная среда.
- •Глава 6. Понятие о силах, распределенных по объему и поверхности физической системы
- •1. Массовые и поверхностные силы
- •2. Граничные условия в формулировке гидродинамических проблем
- •3. Общая постановка задач о течении идеальной нетеплопроводной жидкости.
- •4. Потенциальные вихревые движения идеальной среды. Основные теоремы
- •Глава 7. Статика жидкостей и их свойства. Основные законы равновесия
- •1. Уравнения равновесия жидкости и газа
- •2. Равновесие жидкости в поле силы тяжести
- •3. Относительный покой жидкости
- •4. Статическое давление жидкости на твердые поверхности. Закон Архимеда
- •Глава 8. Динамика вязкой жидкости и газа. Уравнения законов сохранения массы, импульса и энергии
- •1. Математическая формулировка процессов переноса в сплошной среде
- •1.1. Понятие о газообразных средах.
- •2. Уравнения законов сохранения массы и импульса в однофазной области
- •Глава 9. Моделирование турбулентности
- •1. Физическая постановка задачи
- •2. Математическая формулировка проблемы
- •3. Модель турбулентности к замыканию уравнений, определяющих течение и теплоперенос во внутренних системах
- •Глава 10. Современные методики математического моделирования и расчета турбулентных течений
- •1. Актуальность проблемы комплексного физико-математического и численного моделирования теплогидрогазодинамических процессов
- •2. Схема численного интегрирования уравнений приближения “узкого канала”.
- •3. Замечания о сходимости итерационного процесса
- •4. Характеристика отдельных процессов. Результаты и их обсуждение
- •Глава. 11. Введение в теорию подобия потоков однофазных и многофазных сред
- •1. Некоторые замечания по введению аппарата теории подобия
- •2. Основные теоремы
- •Глава 12. Уравнение Бернулли в механике жидкости. Основные теоремы
- •1. Вводные замечания, определения и теоремы
- •1.1. Интеграл Бернулли и усложненная термодинамика.
- •1.2. Интеграл Лагранжа.
- •2. Основные теоремы динамики жидкости
- •Глава 13. Основные положения задачи об истечении капельных сред из замкнутых систем
- •1. Понятия и определения
- •2. Истечение из насадок
- •Глава 14. Гидравлический удар в трубопроводах
- •1. Актуальность и физическое содержание вопроса
- •2. Условия на разрывах (скачках) гидродинамических величин
- •Глава 15. Насосы. Принципиальные схемы и характеристики
- •1. Основные сведения и некоторые замечания
- •1.1. Динамические насосы.
- •1.2. Объемные насосы.
- •2.Основные параметры насосов
- •3. Принцип работы центробежных насосов
- •4. Основные и подпорные центробежные насосы для магистральных трубопроводов
- •5. Характеристики магистральных насосов
- •6. Совместная работа турбомашин
- •7. Регулирование турбомашин
- •8. Конструктивное исполнение динамических насосов
- •8.1. Общая схема насосной установки
- •8.2. Основные элементы конструкций динамических насосов
- •9. Шестеренные насосы
- •10. Явление кавитации
- •Глава 16. Современные методики расчета детальной гидродинамической картины турбулентного течения в трубопроводах
- •1. Критический анализ моделей
- •2. Математическая модель течения
- •3. Граничные условия и численный метод решения
- •4. Обсуждение результатов
- •5. Основные выводы
- •Заключение
- •Литература
- •Основы гидродинамики и теплообмена и их применения в практике
5. Основные выводы
Расчеты показывают, что более точное описание узкой пристенной зоны на базе ПРН- моделей должно быть связано с поиском лучших аппроксиаций членов диффузии и перераспределения. Модель Элгобаши здесь имеет преимущества в корректности учета анизотропии течения и эффектов, связанных с малыми числами Рейнольдса. Однако численный алгоритм в этом случае является неэкономичным. Алгоритм, построенный на базе ПРН-L- модели, требует на 50% меньше времени в сравнении с остальными при получении установившегося решения. Видно также, что особенности внутренних течений достаточно корректно можно прогнозировать на основе ПРН-L-модели, учитывающих анизотропный характер турбулентности непосредственно у стенки и позволяющих воспроизводить эффекты смещения зон экстремальной интенсивности пульсаций вглубь потока, распада энергосодержащих вихрей и их восстановление, а также элементы перемежаемости.
Заключение
Как показывает вышеизложенный материал, практические результаты работы с современными моделями и модулями программ, методиками численного расчета сложных сдвиговых течений в трубах могут быть сведены к некоторым замечаниям. Так, основные выводы по анализу гидродинамики и теплообмена при турбулентных режимах течений в трубопроводных системах, трубах и каналах с короткими и протяженными участками показывают:
более точное описание узких пристеночных зон на базе современных алгоритмов, ПРН- моделей турбулентности должно быть связано с поиском лучших аппроксимаций членов диффузии и перераспределения.;
Алгоритм, построенный на базе ПРН-L-модели, требует на 50% меньше времени в сравнении с остальными при получении установившегося решения. Видно также, что особенности внутренних течений достаточно корректно можно прогнозировать на основе ПРН-L-модели, учитывающих анизотропный характер турбулентности непосредственно у стенки и позволяющих воспроизводить эффекты смещения зон экстремальной интенсивности пульсаций вглубь потока, распада энергосодержащих вихрей и их восстановление, а также элементы перемежаемости;
описанные алгоритмы надежны и эффективны в расчете течений с особенностью границ течения, включающих неоднозначные эффекты конвективного и диффузионного взаимодействия;
интегральный масштаб турбулентности L, уравнение интенсивности пульсаций температур весьма корректны в предсказании механизмов смещения турбулентности, ее вырождения и последующего восстановления;
детальный анализ проблем, встречающихся при моделировании внутренних течений и теплообмена жидкости со стенками канала вполне возможен на уровне полных транспортных уравнений для тонких параметров.
Литература
Лойцянский Л.Г. Механика жидкости и газа. М.: Гл. ред. физ.- мат. л-ры, 1993. -848с.
Седов Л.И. Механика сплошных сред. Т.2. М.: Гл. ред. физ.- мат. л-ры, 1976. -576с.
Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика. М.: Физматгиз, 1963 В 2-х т. -584с.
Лурье М.В. Математическое моделирование процессов трубопроводного транспорта нефти, нефтепродуктов и газа: Уч. пос. – М. ФГУП Изд.-во “Нефть и газ” РГУ нефти и газа им. И.М. Губкина, 2003. – 336с.
Хант Д.Н. Динамика несжимаемой жидкости. М. Мир, 1967. -183с.
Архипов В.А. Лазерные методы диагностики гетерогенных потоков. Учебное пособие. Томск: Изд–во ТГУ, 1987. -140с.
Харламов С.Н и др. Математические модели течения и теплообмена во внутренних задачах динамики вязкого газа. Томск: Изд-во Том. ун-та, 1993. - 187с.
8. Бубенчиков А.М., Харламов С.Н. Математические модели неоднородной анизотропной турбулентности во внутренних течениях. -Томск: Изд.-во ТГУ, 2001. -448с.
9. Турбулентные сдвиговые течения 1/ Под ред. Ф. Дурста и др. М.: Машиностроение. 1982. -432c.
10. Флетчер К. Вычислительные методы в динамике жидкостей. М.: Мир,1990. В 2-х т.