Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
учеб_пос_ГидрмЕХ_2011.doc
Скачиваний:
47
Добавлен:
27.09.2019
Размер:
4.91 Mб
Скачать

Глава 1. Проблемы прогноза процессов переноса при реальных условиях движения сложных сред в трубах

  1. Введение

    1. Связь с дисциплинами физико-математического профиля

Движение сплошных сред (однородных и неоднородных по составу жидкостей, газов, а также смесей, состоящих из них) изучают такие науки как гидравлика и гидрогазодинамика. Предметом исследования здесь выступают задачи механики сплошных сред (МСС). МСС – это обширная часть механики, в которой с помощью и на основе данных, развитых в теоретической механике, рассматриваются движения таких материальных тел, которые заполняют пространство непрерывно, сплошным образом, и расстояния между точками во время движения меняются.

Гидравлика, как техническая наука, изучает законы равновесия и движения жидкостей и разрабатывает способы практического применения этих законов к расчетам искусственных и естественных русел, сооружений и машин. В отличие от гидродинамики, гидравлика характеризуется упрощенным подходом к изучению явлений течения жидкостей, довольствуясь часто только анализом одномерного случая течения сплошной среды.

Гидрогазодинамика, как раздел гидромеханики, изучает движения жидкостей и газов при взаимодействии с твердой стенкой. Это весьма важно для внедрения теоретических результатов в практику.

1.2. Основные этапы развития гидродинамических исследований

Современная гидравлика (ГДВ) является одной из прикладных отраслей гидромеханики (ГМ) в широком смысле этого слова. Развитие ГДВ определялось потребностями науки и техники, развитием отраслей промышленности таких, как машиностроение, теплоэнергетика, горное дело, нефтяная и газовая индустрия.

Экскурс в историю науки показывает:

  • что конец XIX-начало XX века – это период активности российской высшей школы. Здесь заметны результаты Н.Е. Жуковского, И.С. Громека в связи с появлением первых исследовательских лабораторий по ГДВ.

  • 30-е годы 20 века представляют период строительства гидроэлектростанций (ГЭС) со сложной системой водоснабжения на Днепре, Волге, Ангаре, Иртыше и Оби, и это дополнительно стимулировало исследования в области ГДВ по проблемам: 1) построения эффективных методик оценки гидравлического сопротивления при движении жидкостей по замкнутым системам; 2) нестационарным расчетам изо- и неизотермических течений в каналах с переменной формой поперечного сечения; 3) прогноза многокомпонентных потоков с фазовыми переходами; 4) исследований турбулентности; 5) движений взвесей и т.д.

  • 50-70-е годы XXв. – период активизации строительства нефте- и газопроводов – время мощного развития исследований по нефтяной ГДВ.

  • С конца XXв. до настоящего времени – период активного сближения прикладной ГДВ и фундаментальной механики, механики турбулентности, теорий пограничного слоя, реологии и физической химии.

2. Представления о сопротивлении, как потерях механической энергии при движении жидкости в трубопроводах

Со времени первых измерений скорости потока и напора (или гидравлического уклона) придвижении жидкости в трубах известно: потери напора (механической энергии потока) находятся в сложной связи со скоростью течения.

Характер связи [ , как потери напора от скорости] в значительной мере разъяснен О. Рейнольдсом (80-е г. XIXв.). Однако вплоть до 30-х г.XXв. отсутствовали представления о всем комплексе факторов, определяющих ς-связь. В понимание механизмов изменения ς по каналу большую роль внес Л. Прандтль. В нашей стране заметны результаты: 1) Н.Н. Павловского – по систематизации опытного материала движения капельных сред в открытых руслах; 2) Л.С. Лейбензона, В.С. Яблонского – исследования сопротивлений при движении нефти и нефтепродуктов в трубопроводах.

Все исследования по ГДВ сопротивлениям можно классифицировать на группы:

  1. анализ местных ГДВ сопротивлений;

  2. изучения сопротивлений по длине канала при равномерном движении капельных сред (ς-связь для многих переменных – критериев подобия);

  3. исследования механизмов потерь энергии в потоке.

Задачи 1-3 группы основываются на: использовании опытных данных; применении теоремы об изменении количества движения.

Заслуга А. Д. Альтшуля в решении задач1-3 группы: 1) осуществил учет влияния локального Re на ς, ξ; построил связь ξ=f(Re, C) с учетом ; 2) на основе полуэмпирической теории турбулентности получил формулы для ξ и профиля скоростей в трубах, действительные во всей области турбулентного течения.

В этой части накоплен значительный материал по анализу течений в трубах круглого поперечного сечения.

Потоки в призматических трубах активно исследовались, например, А.М. Обуховым и др. на основе условий локального подобия турбулентных процессов в различных точках потока жидкости. Так А.М. Обухов ввел прием определения масштаба турбулентности (аналог l - длины пути перемешивания Прандтля), как функции поперечного сечения, работающую в односвязной области. Здесь l – некоторое обобщение (частная форма) интегрального масштаба турбулентности:

, (1)

где ej – орт оси Охj; rik – коэффициент корреляции между i-ой и k-ой компонентами скорости в точках . L учитывает пространственную природу, размер вихря, диссипирующего на стенках.

В последнее время очень интенсивны исследования по включению L в расчет сложных течений. Здесь заметны результаты: 1) Н..И. Булеева (1962). Им предложена кинетическая модель механизма турбулентного обмена в потоках жидкости; 2) Г.С. Глушко- О.Ф. Васильев - В.И. Квон ввели транспортное уравнение для L Использование этой модели позволяет избежать многие трудности расчета пристеночных процессов.

Основные проблемы в расчете сложного сдвигового течения до результатов Булеева-Глушко-Квона сводились к следующему: традиционно использовали понятие гидравлического радиуса в попытке учесть особенности формы поперечного сечения ( , где f – площадь поперечного сечения замкнутой системы, s – ее периметр), считая его определяющей линейной характеристикой сечения. Однако, это не всегда дает удовлетворительные результаты: согласно данным А. Базена ς канала прямоугольного сечения на 15% больше данных канала полукруглого сечения при одинаковом гидравлическом радиусе и шероховатости границ потока.

При исследовании задач 3-й группы (потери энергии в потоке) необходимо детально анализирорвать механизмы изменения энергии под действием внешних сил. А, следовательно, необходим учет влияния на ς критериев Fr, Gr, Ra, Ro и т. д.

Изучение механизма потерь энергии в турбулентном потоке связан с изучением структуры самого турбулентного течения в каналах.

Известно, что особое значение имеет структура течения в пристеночной области. Поэтому необходимо включать в анализ процессов переноса уравнение баланса энергии турбулентности K и масштаба L:

; (2)

; (3)

. (4)

Эти уравнения позволяют оценить роль процессов обмена и диссипации в общем процессе передачи энергии от осредненного движения к турбулентности и далее в тепло. Здесь выделяются идеи А.Н. Колмогорова (1942, 1946) , Невзглядова В.Г.(1945, 1959).

Использование моделей турбулентности типа k-ε, k-τ, k-ω открывает реальные возможности для феноменологического замыкания системы уравнений турбулентного потока. С помощью этого подхода рассчитаны многие сложные течения с тепломассообменом во внутренних системах [Харламова С.Н., 1993, 2001].