Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
учеб_пос_ГидрмЕХ_2011.doc
Скачиваний:
47
Добавлен:
27.09.2019
Размер:
4.91 Mб
Скачать

3. Общая постановка задач о течении идеальной нетеплопроводной жидкости.

Система определяющих уравнений включает.

  1. Уравнение неразрывности- .

  2. Уравнение движения сплошной среды, которые в проекциях на оси координат имеют вид:

. (10)

(10) – уравнения Эйлера – уравнения движения идеальной жидкости.

3. Уравнение энергии. Т.к. жидкость нетеплопроводна, то . Имеем

.

  1. Уравнение состояния – f(p,ρ,T)=0 и выражение для внутренней энергии E через какие-либо 2 величины из 3 (p,ρ,T).

Более подробно система имеет вид:

;

;

; (11)

;

;

f(p,ρ,T)=0.

Здесь E=E(p,T).

Зам.: Этой системе удовлетворяют все течения идеальной нетеплопроводной жидкости, как установившиеся, так и неустановившиеся, а также относящиеся к обтеканию жидкостью различных тел при разнообразных условиях.

4. Потенциальные вихревые движения идеальной среды. Основные теоремы

Рассмотрим безвихревые движения, т.е. движения, для которых

(12)

или в проекциях на ост координат

. (13)

При выполнении (12) линейная дифференциальная форма будет полным дифференциалом некоторой функции φ для любого фиксированного момента времени. Иначе говоря, существует такая функция φ(x,y,z,t), для которой полный дифференциал при достаточном постоянном t вычисляется по формуле . Но поскольку

, то имеем . (14)

Т.е. компоненты скорости есть частные производные от функции φ(x,y,z,t) по координатам. Функцию φ наз. потенциалом скоростей, а безвихревые движения наз. потенциальными. Для установившихся движений φ =φ(x,y,z). Тогда (14) равносильны равенству , которое следует из (12).

Вихревые движения идеальной жидкости. Это движения, у которых вектор вихря во всех точках области или какой-либо ее части не равен нулю: Ω≠0. При изучении вихревых движений приходится иметь дело с такими понятиями, как циркуляция скорости и поток вектора вихря скорости через поверхность. Ниже рассматриваются основные теоремы вихревого движения идеальной жидкости (Стокса, Томсона, Лагранжа, Гельмгольца).

Теорема Стокса. Поток вектора вихря через поверхность S равен циркуляции скорости по контуру, ограничивающему эту поверхность: .

Теорема Томсона. Если жидкость идеальна, баротропна и массовые силы имеют потенциал, то циркуляция скорости по любому замкнутому контуру не зависит от времени.

Теорема Лагранжа. Пусть выполнены условия теоремы Томсона, т.е.жидкость идеальна, баротропна и массовые силы консервативны. Тогда, если в некоторый момент времени t0 в фиксированной массе жидкости нет вихрей, то их не было в предыдущие и не будет в последующие моменты времени.

Теоремы Гельмгольца.

1 теорема. Если жидкие частицы в какой-либо момент времени t0 образуют вихревую линию, то эти же частицы образуют вихревую линию во все последующие и все предыдущие моменты времени.

2 теорема. Интенсивность вихревой трубки постоянна по ее длине и не изменяется со временем.

Совокупность вихревых линий, проведенных через замкнутый контур, образует вихревую трубку. Интенсивностью вихревой трубки называют циркуляцию скорости по контуру, охватывающему трубку . Такое понятие имеет смысл, если интенсивность (т.е. циркуляция Г) не зависит от положения контура l по длине трубки. По теореме Стокса , S – поверхность, пересекающая вихревую трубку.