Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
учеб_пос_ГидрмЕХ_2011.doc
Скачиваний:
47
Добавлен:
27.09.2019
Размер:
4.91 Mб
Скачать

7. Регулирование турбомашин

Регулирование турбомашин может быть при переменной и постоянной скоростях вращения. Регулирование параметров турбомашин-генераторов путем плавного изменения числа оборотов достигается применением в качестве привода электродвигателя постоянного тока, электродвигателя с фазовым ротором или двигателя внутреннего сгорания. В этом случае в соответствии с законами пропорциональности будет получена новая характеристика турбомашины при неизменной характеристике трубопровода. Однако, поскольку основная масса турбомашин-генераторов приводится в действие асинхронным электродвигателем с короткозамкнутым ротором, не позволяющим осуществлять плавную регулировку числа оборотов, то чаще применяется регулировка турбомашин при постоянной скорости вращения. Основными способами регулирования турбомашин-генераторов при сохранении скорости первичного двигателя являются следующие:

  1. Изменение степени закрытия регулирующей задвижки на нагнетательном трубопроводе, чем искусственно изменяется характеристика трубопровода при сохранении индивидуальной характеристики турбомашины (рис. 12). Способ этот прост, но экономически несовершенен из-за существенных потерь напора и значительного снижения к. п. д. установки.

  2. Дросселирование задвижкой во всасывающем трубопроводе, что приводит к снижению подачи и напора турбомашины при сохранении характеристики трубопровода. При этом способе возникает вероятность разрыва сплошности, а значит и возникновения явления кавитации. Такой способ можно применять в случае, если насос расположен ниже уровня приемного резервуара, или при регулировании турбокомпрессоров.

  3. Частичный перепуск текучего вещества из нагнетания во всасывание, что также является малоэкономичным. Такой способ может быть приемлем при регулировании производительности скважинного насоса, когда дебит скважины ниже его производительности.

  4. Уменьшение диаметра рабочего колеса за счет его обрезки приемлемо как для турбомашин-генераторов, так и для турбомашин-двигателей. При этом изменяются параметры турбомашины в соответствии с законами пропорциональности.

  5. Изменение угла установки лопастей рабочих колес или угла установки лопаток направляющего аппарата при входе в турбомашину. Изменение параметров машины при этом осуществляется за счет изменения скорости закручивания на входе. Это наиболее экономичный и часто применяемый способ регулирования турбомашин как генераторов, так и двигателей.

  6. Увеличение давления во всасывающем трубопроводе.

  7. Изменение числа ступеней в многоступенчатых секционных насосах.

Рис. 12. Характеристика внешней сети

8. Конструктивное исполнение динамических насосов

8.1. Общая схема насосной установки

Общая схема насосной установки приведена на рис. 13. Водоподающая установка с центробежным насосом состоит из следующих основных элементов: насоса 1, двигателя 2, пускателя 3, подводящего 4 и напорного 5 трубопроводов. На подводящем трубопроводе имеется приемная сетка 6 и клапан 7, на напорном - задвижка 8 и обратный клапан 9. Трубка 10 с вентилем 11 необходима для заливки водой из напорного трубопровода насоса и подводящего трубопровода. Заливку производят перед пуском насоса. Она может быть осуществлена также через воронку 12 или подачей воды в подводящий трубопровод специальным заливочным насосом.

Труба 13 с задвижкой 14 необходима для выпуска воды при ремонте трубопровода 5. С помощью вакуумметра 15 измеряется разрежение на входе в насос, а с помощью манометра 16 -давление на выходе из насоса. Сетка 6 служит для предохранения от попадания в насос с водой посторонних предметов, клапан 7 - для удержания воды при заливке подводящего трубопровода и насоса, а клапан 9 - для того, чтобы при внезапной остановке насоса не произошло гидравлического удара на насос. Через кран 17 выпускают воздух из насоса при заливке.

При работе насоса в подводящем трубопроводе создается разрежение, и жидкость под давлением атмосферного воздуха поступает из резервуара в корпус насоса, происходит процесс всасывания.

На выходе из насоса создается напор, под действием которого вода движется по напорному трубопроводу.

Геометрическая высота всасывания Нв - расстояние по вертикали от нижнего уровня жидкости в резервуаре до оси насоса.

Геометрическая высота нагнетания Нг - расстояние по вертикали от оси насоса до сливного отверстия напорного трубопровода.

Геометрический напор насосной установки Hг является полной геометрической высотой подъема жидкости.

Рис. 13 Схема насосной установки

При вертикально расположенном трубопроводе (рис. 13, а)

Hг = Hв + Hн;

при наклонно расположенном трубопроводе (рис. 13, б)

НГ = lП sin αВ + lН sin aH,

где lП и lН - длина соответственно подводящего (от поверхности жидкости в колодце до насоса) и напорного трубопроводов; а αВ и aH - углы наклона к горизонту соответственно подводящего и напорного трубопроводов.

Напор H, создаваемый насосом, складывается из геометрического напора, гидравлических потерь в трубопроводе и скоростного напора, затрачиваемого на сообщение жидкости скорости.