
- •Учебное пособие основы гидродинамики и теплообмена и их применения в практике содержание
- •Глава 1. Проблемы прогноза процессов переноса при реальных условиях движения сложных сред в трубах ………………………………………………………………………….…………….7
- •Глава 2. Экспериментальные методы исследований. Элементарные понятия, определения теории вероятности и математической статистики в исследовании сплошных сред ….17
- •Глава 3. Понятие о методах изучения сплошных сред и их теплофизичеких свойствах ….. 26
- •Глава 4. Измерения динамических параметров в рабочем теле. Методы и приборы ………32
- •Глава 5. Понятие о реальной и идеальной средах ……………………………………………..51
- •Глава 16. Современные методики расчета детальной гидродинамической картины турбулентного течения смеси в трубопроводах………………………………………………..120
- •Предисловие
- •Глава 1. Проблемы прогноза процессов переноса при реальных условиях движения сложных сред в трубах
- •Введение
- •Связь с дисциплинами физико-математического профиля
- •1.2. Основные этапы развития гидродинамических исследований
- •2. Представления о сопротивлении, как потерях механической энергии при движении жидкости в трубопроводах
- •3. Неустановившиеся течения жидкости
- •4. Проблемы установившихся и неустановившихся течений в трубопроводах
- •5. Учет многокомпонентности состава смеси и фазовых переходов
- •6. Взвесенесущие и газожидкостные потоки
- •Положения теории х.А. Рахматуллина в описании многофазных потоков
- •7. Экспериментальные методы исследований взвесей
- •7.1. Газожидкостные потоки
- •8. Течения неоднородных по плотности потоков в стратифицированных средах
- •9. Моделирование как метод познания
- •10. Актуальность проблемы комплексного физико-математического и численного моделирования теплогидрогазодинамических процессов в технологии транспорта нефти и газа
- •11. Современные достижения в моделировании турбулентных течений с тепломассообменом
- •Глава 2. Экспериментальные методы исследований. Элементарные понятия, определения теории вероятности и математической статистики в исследовании сплошных сред
- •Замечания по математической обработке результатов измерений
- •Основные понятия
- •Понятие о выборке
- •1.3. Математическая обработка результатов опыта
- •1.4. Косвенные измерения
- •2. Современные методы диагностики развивающихся потоков. Лдис оборудование
- •Глава 3. Понятие о методах изучения сплошных сред и их теплофизичеких свойствах
- •1. Феноменологический и статистический методы описания среды
- •2. Проблемы моделирование гидродинамических процессов с средах со сложной структурой и химическими реакциями
- •3. Коэффициенты переноса в рамках статистической теории вязких многокомпонентных инертных и химически реагирующих сред
- •3.1. Некоторые сведения формальной кинетики химических реакций
- •3.2. Переносные свойства реагирующих многокомпонентных систем
- •3.2.2. Коэффициент бинарной диффузии.
- •4. Замечания к формулировке физических свойств континуума в рамках феноменологического метода
- •Глава 4. Измерения динамических параметров в рабочем теле. Методы и приборы
- •1. Измерение давлений
- •2. Измерение скоростей
- •3. Детальные средства изучения среды: лазерный доплеровский измеритель скоростей
- •Глава 5. Понятие о реальной и идеальной средах
- •1. Основные подходы к изучению движения сплошных сред
- •2. Индивидуальная производная
- •3. Напряженное состояние деформируемой среды
- •4. Тензор напряжений
- •4.1. Идеальная жидкость, ее тензор напряжений
- •Вязкая жидкость
- •5.1. Нетеплопроводная среда.
- •Глава 6. Понятие о силах, распределенных по объему и поверхности физической системы
- •1. Массовые и поверхностные силы
- •2. Граничные условия в формулировке гидродинамических проблем
- •3. Общая постановка задач о течении идеальной нетеплопроводной жидкости.
- •4. Потенциальные вихревые движения идеальной среды. Основные теоремы
- •Глава 7. Статика жидкостей и их свойства. Основные законы равновесия
- •1. Уравнения равновесия жидкости и газа
- •2. Равновесие жидкости в поле силы тяжести
- •3. Относительный покой жидкости
- •4. Статическое давление жидкости на твердые поверхности. Закон Архимеда
- •Глава 8. Динамика вязкой жидкости и газа. Уравнения законов сохранения массы, импульса и энергии
- •1. Математическая формулировка процессов переноса в сплошной среде
- •1.1. Понятие о газообразных средах.
- •2. Уравнения законов сохранения массы и импульса в однофазной области
- •Глава 9. Моделирование турбулентности
- •1. Физическая постановка задачи
- •2. Математическая формулировка проблемы
- •3. Модель турбулентности к замыканию уравнений, определяющих течение и теплоперенос во внутренних системах
- •Глава 10. Современные методики математического моделирования и расчета турбулентных течений
- •1. Актуальность проблемы комплексного физико-математического и численного моделирования теплогидрогазодинамических процессов
- •2. Схема численного интегрирования уравнений приближения “узкого канала”.
- •3. Замечания о сходимости итерационного процесса
- •4. Характеристика отдельных процессов. Результаты и их обсуждение
- •Глава. 11. Введение в теорию подобия потоков однофазных и многофазных сред
- •1. Некоторые замечания по введению аппарата теории подобия
- •2. Основные теоремы
- •Глава 12. Уравнение Бернулли в механике жидкости. Основные теоремы
- •1. Вводные замечания, определения и теоремы
- •1.1. Интеграл Бернулли и усложненная термодинамика.
- •1.2. Интеграл Лагранжа.
- •2. Основные теоремы динамики жидкости
- •Глава 13. Основные положения задачи об истечении капельных сред из замкнутых систем
- •1. Понятия и определения
- •2. Истечение из насадок
- •Глава 14. Гидравлический удар в трубопроводах
- •1. Актуальность и физическое содержание вопроса
- •2. Условия на разрывах (скачках) гидродинамических величин
- •Глава 15. Насосы. Принципиальные схемы и характеристики
- •1. Основные сведения и некоторые замечания
- •1.1. Динамические насосы.
- •1.2. Объемные насосы.
- •2.Основные параметры насосов
- •3. Принцип работы центробежных насосов
- •4. Основные и подпорные центробежные насосы для магистральных трубопроводов
- •5. Характеристики магистральных насосов
- •6. Совместная работа турбомашин
- •7. Регулирование турбомашин
- •8. Конструктивное исполнение динамических насосов
- •8.1. Общая схема насосной установки
- •8.2. Основные элементы конструкций динамических насосов
- •9. Шестеренные насосы
- •10. Явление кавитации
- •Глава 16. Современные методики расчета детальной гидродинамической картины турбулентного течения в трубопроводах
- •1. Критический анализ моделей
- •2. Математическая модель течения
- •3. Граничные условия и численный метод решения
- •4. Обсуждение результатов
- •5. Основные выводы
- •Заключение
- •Литература
- •Основы гидродинамики и теплообмена и их применения в практике
Глава 13. Основные положения задачи об истечении капельных сред из замкнутых систем
1. Понятия и определения
При рассмотрении многих технических вопросов, как истечение жидкости из резервуаров различного назначения, утечки через свищи в трубопроводах, распыление жидкости через форсунки приходится сталкиваться с задачами истечения через отверстия и насадки.
1.1. Истечение из малого отверстия. Для примера рассматривается резервуар, в днище которого имеется круглое отверстие диаметра d. Особенность истечения связана с тем, что струя, вытекая, сжимается и на некотором расстоянии l приобретает площадь сечения ωc, меньшую, чем площадь отверстия ω. Величина
(1)
наз. коэффициентом сжатия струи.
Если стенки резервуара (Р) не влияют на формирование струи, то сжатие наз. совершенным. Наоборот – несовершенным. Из опыта следует, чтобы сжатие было совершенным необходимо, чтобы расстояние от стенки с>3d. Если по части периметра отверстия имеются направляющие козырьки, то сжатие наз. неполным. Наоборот – полным.
Для определения скорости истечения из отверстия воспользуемся уравнением Бернулли для участка между сечениями (0 – свободная поверхность, с – место, где заканчивается сужение). Тогда
.
(2)
Также из уравнения неразрывности следует, что
,
(3)
где ω0 – площадь Р в сечении 0. Из опыта следует, что l≈d и l<<H. Все потери напора сосредоточены в отверстии, которое является местным сопротивлением. Согласно формуле Дарси-Вейсбаха имеем:
.
(4)
С учетом (3), (4) из (2) имеем
.
(5)
Из (5) следует, что скорость истечения wc будет
.
(6)
Здесь
- напор истечения. (7)
- коэффициент скорости. (8)
В приведенных обозначениях по (7), (8) cвязь (6) имеет вид
. (9)
Замечание. Величины α0 >1, αс >1; ς>0, благодаря вязкости; ε<1 из-за наличия инерции. Поэтому φ учитывает вязкостные и инерционные эффекты.
Определение. Если для отверстия
выполняется
,
то отверстие наз. малым. Для него (9)
сохраняет свой вид, но коэффициент
скорости равен
.
(В указанных допущениях φ<1). Для
идеальной жидкости (αс =1, ς=0).
Тогда φ=1 и (9) имеет вид
. (10)
(10) наз. теоретической скоростью истечения.
Расход через отверстие равен
или
.
(11)
Величина μ=εφ наз. коэффициентом расхода.
Таким образом, параметры ε, φ, μ не являются независимыми, а связаны соотношением. Они определяются экспериментально и являются функциями числа Рейнольдса.
С помощью уравнения Бернулли можно показать, что для малого отверстия (9) и (11) будут справедливы и в том случае, если отверстие находится в боковой стенке Р. При этом под H понимают расстояние от оси отверстия до свободной поверхности.
Истечение при ламинарном режиме. Для ламинарного истечения, путем интегрирования ДУ движения реальной жидкости, может быть получена формула для скорости истечения Семпсона:
.
(12)