
- •Техническая Электроника
- •Оглавление
- •Предисловие
- •Введение
- •Глава 1 пассивные компоненты электронных устройств
- •1.1. Резисторы
- •Числовые коэффициенты первых трех рядов
- •Допустимые отклонения сопротивлений
- •Основные параметры резисторов
- •1.1.1. Система условных обозначений и маркировка резисторов
- •Специальные резисторы
- •1.2. Конденсаторы
- •1.2.1. Система условных обозначений конденсаторов
- •1.2.2. Параметры постоянных конденсаторов
- •1.2.3. Конденсаторы переменной ёмкости
- •1.3. Катушки индуктивности
- •Параметры катушек индуктивности
- •Глава 2 полупроводниковые диоды
- •2.1. Физические основы полупроводниковых приборов
- •2.2. Примесные полупроводники
- •2.3. Электронно-дырочный переход
- •2.4. Физические процессы в p–n переходе
- •2.5. Контактная разность потенциалов
- •2.6. Прямое включение p–n перехода
- •2.7. Обратное включение p–n перехода
- •2.8. Вольт–амперная характеристика p–n перехода
- •2.9. Пробой p–n перехода
- •2.10. Емкостные свойства p–n перехода
- •2.11. Полупроводниковые диоды
- •Система обозначения полупроводниковых диодов
- •2.12. Выпрямительные диоды
- •Параметры выпрямительных диодов
- •2.13. Стабилитроны
- •Параметры стабилитрона
- •2.14. Варикапы
- •Параметры варикапов
- •2.15. Импульсные диоды
- •Параметры импульсных диодов
- •2.15.1. Диоды с накоплением заряда и диоды Шотки
- •2.16. Туннельные диоды
- •Параметры туннельных диодов
- •2.17. Обращенные диоды
- •Глава 3 биполярные транзисторы
- •3.1. Режимы работы биполярного транзистора
- •3.2. Принцип действия транзистора
- •3.3. Токи в транзисторе
- •3.4. Статические характеристики
- •3.4.1. Статические характеристики в схеме с об входные характеристики
- •Выходные характеристики
- •Характеристики прямой передачи
- •Характеристики обратной связи
- •3.5. Статические характеристики транзистора в схеме с оэ
- •3.6. Малосигнальные параметры Дифференциальные параметры транзистора
- •Система z–параметров.
- •Система y–параметров
- •Система h–параметров
- •Определение h–параметров по статическим характеристикам
- •3.7. Малосигнальная модель транзистора
- •3.8. Моделирование транзистора
- •3.9. Частотные свойства транзисторов
- •3.10. Параметры биполярных транзисторов
- •Глава 4 полевые транзисторы
- •4.1. Полевой транзистор с управляющим p-n переходом
- •Статические характеристики
- •4.2. Полевые транзисторы с изолированным затвором
- •4.2.2. Статические характеристики мдп-транзистора с
- •4.3. Полевые транзисторы со встроенным каналом
- •4.4. Cтатические характеристики транзистора со
- •4.5. Cпособы включения полевых транзисторов
- •4.6. Полевой транзистор как линейный четырехполюсник
- •4.7. Эквивалентная схема и частотные свойства
- •4.8. Основные параметры полевых транзисторов
- •Глава 5 полупроводниковые переключающие приборы
- •5.1. Диодный тиристор
- •5.2. Триодный тиристор
- •5.3. Симметричные тиристоры (симисторы)
- •5.4. Параметры тиристоров
- •Глава 6 электронно-лучевые приборы
- •6.1. Электростатическая система фокусировки луча
- •6.2. Электростатическая отклоняющая система
- •6.3. Трубки с магнитным управлением электронным лучом
- •6.4. Экраны электронно-лучевых трубок
- •6.5. Система обозначения электронно-лучевых трубок
- •6.6. Осциллографические трубки
- •6.7. Индикаторные трубки
- •6.8. Кинескопы
- •6.9. Цветные кинескопы
- •Глава 7 элементы и устройства оптоэлектроники
- •7.1. Источники оптического излучения
- •7.2. Характеристики светодиодов
- •7.3. Основные параметры светодиодов
- •7.4. Полупроводниковые приемники излучения
- •7.5. Фоторезисторы
- •7.6. Характеристики фоторезистора
- •7.7. Параметры фоторезистора
- •7.8. Фотодиоды
- •7.9. Характеристики и параметры фотодиода
- •7.10. Фотоэлементы
- •7.11. Фототранзисторы
- •7.12. Основные характеристики и параметры фототранзисторов
- •7.13. Фототиристоры
- •7.14. Оптопары
- •7.15. Входные и выходные параметры оптопар
- •7.16. Жидкокристаллические индикаторы
- •Параметры жки
- •Глава 8 элементы интегральных микросхем
- •8.1. Пассивные элементы интегральных микросхем
- •8.1.1. Резисторы
- •8.1.2. Конденсаторы
- •8.1.3. Пленочные конденсаторы
- •8.2. Биполярные транзисторы
- •8.3. Диоды полупроводниковых имс
- •8.4. Биполярные транзисторы с инжекционным питанием
- •8.5. Полупроводниковые приборы c зарядовой связью
- •Применение пзс
- •Параметры элементов пзс
- •Глава 9 основы цифровой техники
- •9.1. Электронные ключевые схемы
- •9.2. Ключи на биполярном транзисторе
- •9.3. Ключ с барьером Шотки
- •9.4. Ключи на мдп транзисторах
- •9.5. Ключ на комплементарных транзисторах
- •9.6. Алгебра логики и основные её законы
- •9.7. Логические элементы и их классификация
- •Классификация ис по функциональному назначению
- •Классификация ис по функциональному назначению
- •9.8. Базовые логические элементы цифровых
- •9.9. Диодно–транзисторная логика
- •9.10. Транзисторно–транзисторная логика (ттл)
- •9.11. Микросхемы ттл серий с открытым коллектором
- •9.12. Правила схемного включения элементов
- •9.13. Эмиттерно–связанная логика
- •9.14. Интегральная инжекционная логика (и2л)
- •9.15. Логические элементы на мдп-транзисторах
- •9.16. Параметры цифровых ис
- •9.17. Триггеры
- •Параметры триггеров
- •9.18. Мультивибраторы
- •9.18.1. Мультивибраторы на логических интегральных элементах
- •9.18.2. Автоколебательный мультивибратор с
- •9.18.3. Автоколебательные мультивибраторы с
- •9.18.4. Ждущие мультивибраторы
- •Глава 10 аналоговые устройства
- •10.1. Классификация аналоговых электронных устройств
- •10.2. Основные технические показатели и характеристики аналоговых устройств
- •10.3. Методы обеспечения режима работы транзистора в каскадах усиления
- •10.3.1. Схема с фиксированным током базы
- •10.3.2. Схема с фиксированным напряжением база–эмиттер
- •10.3.3. Схемы с температурной стабилизацией
- •10.4. Стабильность рабочей точки
- •10.5. Способы задания режима покоя в усилительных
- •10.6. Обратные связи в усилителях
- •10.6.1. Последовательная обратная связь по напряжению
- •10.6.2. Последовательная обратная связь по току
- •10.7. Режимы работы усилительных каскадов
- •10.8. Работа активных элементов с нагрузкой
- •10.9. Усилительный каскад с общим эмиттером
- •10.10. Усилительный каскад по схеме с общей базой
- •10.11. Усилительный каскад с общим коллектором
- •10.12. Усилительные каскады на полевых транзисторах
- •10.12.1. Усилительный каскад с ои
- •10.12.2. Усилительный каскад с общим стоком
- •10.13. Усилители постоянного тока
- •Глава 11 Дифференциальные и операционные усилители
- •11.1. Дифференциальные усилители
- •11.2. Операционные усилители
- •11.3. Параметры операционных усилителей
- •11.4. Амплитудно и фазочастотные характеристики оу
- •11.5. Устройство операционных усилителей
- •11.6. Оу общего применения
- •11.7. Инвертирующий усилитель
- •11.8. Неинвертирующий усилитель
- •11.9. Суммирующие схемы
- •11.9.1. Инвертирующий сумматор
- •11.9.2. Неинвертирующий сумматор
- •11.9.3. Интегрирующий усилитель
- •11.9.4. Дифференцирующий усилитель
- •11.9.5. Логарифмические схемы
- •11.9.6. Антилогарифмирующий усилитель
- •Глава 12 компараторы напряжения
- •Глава 13 Цифро-аналоговые преобразователи
- •13.1. Параметры цап
- •13.2. Устройство цап
- •Глава 14 Аналого-цифровые преобразователи
- •14.1. Параметры ацп
- •14.2. Классификация ацп
- •14.3. Ацп последовательного приближения
- •ЛитературА
Система обозначения полупроводниковых диодов
Она состоит из буквенных и цифровых элементов. Первым элементом обозначения является буква или цифра, определяющая исходный материал диода:
Г или 1 – германий или его соединения;
К или 2 – кремний или его соединения;
А или 3 – арсенид галлия и соединения галлия.
Второй элемент – буква, указывающая назначение диода:
Д – выпрямительные, импульсные;
С – стабилитроны;
В – варикапы;
И – туннельные;
И – обращенные;
А – сверхвысокочастотные;
Л – светодиоды;
Ф – фотодиоды.
Третий элемент – цифра, указывающая на энергетические особенности диода.
Четвертый элемент – две цифры, указывающие номер разработки.
Пятый элемент – буква, характеризующая специальные параметры диода. Например: КД204А, КС156Б, КВ109В, АЛ603Д.
2.12. Выпрямительные диоды
Выпрямительные диоды преобразуют переменный ток в постоянный. В связи с этим к емкости, быстродействию и стабильности параметров этих диодов не предъявляется жестких требований. Основой выпрямительного диода является несимметричный р–n переход с большой площадью поперечного сечения, которая необходима для получения большого прямого тока. Низкоомная область (обычно это р–область), имеющая большую концентрацию примеси, называется эмиттером, а высокоомная область (обычно n–область) с малой концентрацией примесей – базой. Сопротивление базовой области у реальных диодов составляет единицы – десятки Ом. Работа выпрямительных диодов основана на вентильных свойствах перехода.
Наибольшее применение нашли кремниевые, германиевые, диоды с барьером Шоттки, а в аппаратуре специального назначения и измерительной аппаратуре, работающей в условиях высокой температуры, – селеновые и титановые выпрямители.
На рис. 2.11 представлены ВАХ германиевого и кремниевого диодов, их условное обозначение.
В
высоковольтных источниках питания
применяют выпрямительные столбы и
блоки. Выпрямительные столбы представляют
собой последовательное соединение
выпрямительных диодов, находящихся в
одном корпусе, чем достигается повышение
допустимого обратного напряжения. Для
повышения
несколько диодов включают параллельно.
Выпрямительные блоки – это конструктивно завершенные устройства соединенных определенным образом выпрямительных диодов.
По
мощности, рассеиваемой р–n переходом,
диоды бывают малой (
0,3 А),
средней
(0,3 <
10 А)
и большой (
10 А)
мощности.
Сравнение характеристик германиевых и кремниевых диодов показывает:
1. Значение обратного тока германиевых диодов на два–три порядка больше, чем у кремниевых, при одинаковой площади перехода. Это объясняется различной шириной запрещенной зоны.
2. Допустимое обратное напряжение, за счет этого, у кремниевых диодов больше, чем у германиевых.
3. Падение напряжения на кремниевых диодах больше, чем на германиевых при одинаковых токах нагрузки, что обусловлено большим сопротивлением базовой области кремниевых диодов.
На характеристики диодов влияние оказывает температура окружающей среды. При увеличении температуры на 10° C германиевых диодов удваивается, а у кремниевых возрастает в два с половиной раза. Абсолютная величина приращения у германиевых диодов с ростом температуры в несколько раз больше, чем у кремниевых, что приводит к увеличению мощности, потребляемой диодом, и уменьшению напряжения теплового пробоя. У кремниевых диодов мало и мала вероятность теплового пробоя, в связи с чем вначале развивается электрический пробой, который при больших обратных напряжениях может перерости в тепловой.