
- •Техническая Электроника
- •Оглавление
- •Предисловие
- •Введение
- •Глава 1 пассивные компоненты электронных устройств
- •1.1. Резисторы
- •Числовые коэффициенты первых трех рядов
- •Допустимые отклонения сопротивлений
- •Основные параметры резисторов
- •1.1.1. Система условных обозначений и маркировка резисторов
- •Специальные резисторы
- •1.2. Конденсаторы
- •1.2.1. Система условных обозначений конденсаторов
- •1.2.2. Параметры постоянных конденсаторов
- •1.2.3. Конденсаторы переменной ёмкости
- •1.3. Катушки индуктивности
- •Параметры катушек индуктивности
- •Глава 2 полупроводниковые диоды
- •2.1. Физические основы полупроводниковых приборов
- •2.2. Примесные полупроводники
- •2.3. Электронно-дырочный переход
- •2.4. Физические процессы в p–n переходе
- •2.5. Контактная разность потенциалов
- •2.6. Прямое включение p–n перехода
- •2.7. Обратное включение p–n перехода
- •2.8. Вольт–амперная характеристика p–n перехода
- •2.9. Пробой p–n перехода
- •2.10. Емкостные свойства p–n перехода
- •2.11. Полупроводниковые диоды
- •Система обозначения полупроводниковых диодов
- •2.12. Выпрямительные диоды
- •Параметры выпрямительных диодов
- •2.13. Стабилитроны
- •Параметры стабилитрона
- •2.14. Варикапы
- •Параметры варикапов
- •2.15. Импульсные диоды
- •Параметры импульсных диодов
- •2.15.1. Диоды с накоплением заряда и диоды Шотки
- •2.16. Туннельные диоды
- •Параметры туннельных диодов
- •2.17. Обращенные диоды
- •Глава 3 биполярные транзисторы
- •3.1. Режимы работы биполярного транзистора
- •3.2. Принцип действия транзистора
- •3.3. Токи в транзисторе
- •3.4. Статические характеристики
- •3.4.1. Статические характеристики в схеме с об входные характеристики
- •Выходные характеристики
- •Характеристики прямой передачи
- •Характеристики обратной связи
- •3.5. Статические характеристики транзистора в схеме с оэ
- •3.6. Малосигнальные параметры Дифференциальные параметры транзистора
- •Система z–параметров.
- •Система y–параметров
- •Система h–параметров
- •Определение h–параметров по статическим характеристикам
- •3.7. Малосигнальная модель транзистора
- •3.8. Моделирование транзистора
- •3.9. Частотные свойства транзисторов
- •3.10. Параметры биполярных транзисторов
- •Глава 4 полевые транзисторы
- •4.1. Полевой транзистор с управляющим p-n переходом
- •Статические характеристики
- •4.2. Полевые транзисторы с изолированным затвором
- •4.2.2. Статические характеристики мдп-транзистора с
- •4.3. Полевые транзисторы со встроенным каналом
- •4.4. Cтатические характеристики транзистора со
- •4.5. Cпособы включения полевых транзисторов
- •4.6. Полевой транзистор как линейный четырехполюсник
- •4.7. Эквивалентная схема и частотные свойства
- •4.8. Основные параметры полевых транзисторов
- •Глава 5 полупроводниковые переключающие приборы
- •5.1. Диодный тиристор
- •5.2. Триодный тиристор
- •5.3. Симметричные тиристоры (симисторы)
- •5.4. Параметры тиристоров
- •Глава 6 электронно-лучевые приборы
- •6.1. Электростатическая система фокусировки луча
- •6.2. Электростатическая отклоняющая система
- •6.3. Трубки с магнитным управлением электронным лучом
- •6.4. Экраны электронно-лучевых трубок
- •6.5. Система обозначения электронно-лучевых трубок
- •6.6. Осциллографические трубки
- •6.7. Индикаторные трубки
- •6.8. Кинескопы
- •6.9. Цветные кинескопы
- •Глава 7 элементы и устройства оптоэлектроники
- •7.1. Источники оптического излучения
- •7.2. Характеристики светодиодов
- •7.3. Основные параметры светодиодов
- •7.4. Полупроводниковые приемники излучения
- •7.5. Фоторезисторы
- •7.6. Характеристики фоторезистора
- •7.7. Параметры фоторезистора
- •7.8. Фотодиоды
- •7.9. Характеристики и параметры фотодиода
- •7.10. Фотоэлементы
- •7.11. Фототранзисторы
- •7.12. Основные характеристики и параметры фототранзисторов
- •7.13. Фототиристоры
- •7.14. Оптопары
- •7.15. Входные и выходные параметры оптопар
- •7.16. Жидкокристаллические индикаторы
- •Параметры жки
- •Глава 8 элементы интегральных микросхем
- •8.1. Пассивные элементы интегральных микросхем
- •8.1.1. Резисторы
- •8.1.2. Конденсаторы
- •8.1.3. Пленочные конденсаторы
- •8.2. Биполярные транзисторы
- •8.3. Диоды полупроводниковых имс
- •8.4. Биполярные транзисторы с инжекционным питанием
- •8.5. Полупроводниковые приборы c зарядовой связью
- •Применение пзс
- •Параметры элементов пзс
- •Глава 9 основы цифровой техники
- •9.1. Электронные ключевые схемы
- •9.2. Ключи на биполярном транзисторе
- •9.3. Ключ с барьером Шотки
- •9.4. Ключи на мдп транзисторах
- •9.5. Ключ на комплементарных транзисторах
- •9.6. Алгебра логики и основные её законы
- •9.7. Логические элементы и их классификация
- •Классификация ис по функциональному назначению
- •Классификация ис по функциональному назначению
- •9.8. Базовые логические элементы цифровых
- •9.9. Диодно–транзисторная логика
- •9.10. Транзисторно–транзисторная логика (ттл)
- •9.11. Микросхемы ттл серий с открытым коллектором
- •9.12. Правила схемного включения элементов
- •9.13. Эмиттерно–связанная логика
- •9.14. Интегральная инжекционная логика (и2л)
- •9.15. Логические элементы на мдп-транзисторах
- •9.16. Параметры цифровых ис
- •9.17. Триггеры
- •Параметры триггеров
- •9.18. Мультивибраторы
- •9.18.1. Мультивибраторы на логических интегральных элементах
- •9.18.2. Автоколебательный мультивибратор с
- •9.18.3. Автоколебательные мультивибраторы с
- •9.18.4. Ждущие мультивибраторы
- •Глава 10 аналоговые устройства
- •10.1. Классификация аналоговых электронных устройств
- •10.2. Основные технические показатели и характеристики аналоговых устройств
- •10.3. Методы обеспечения режима работы транзистора в каскадах усиления
- •10.3.1. Схема с фиксированным током базы
- •10.3.2. Схема с фиксированным напряжением база–эмиттер
- •10.3.3. Схемы с температурной стабилизацией
- •10.4. Стабильность рабочей точки
- •10.5. Способы задания режима покоя в усилительных
- •10.6. Обратные связи в усилителях
- •10.6.1. Последовательная обратная связь по напряжению
- •10.6.2. Последовательная обратная связь по току
- •10.7. Режимы работы усилительных каскадов
- •10.8. Работа активных элементов с нагрузкой
- •10.9. Усилительный каскад с общим эмиттером
- •10.10. Усилительный каскад по схеме с общей базой
- •10.11. Усилительный каскад с общим коллектором
- •10.12. Усилительные каскады на полевых транзисторах
- •10.12.1. Усилительный каскад с ои
- •10.12.2. Усилительный каскад с общим стоком
- •10.13. Усилители постоянного тока
- •Глава 11 Дифференциальные и операционные усилители
- •11.1. Дифференциальные усилители
- •11.2. Операционные усилители
- •11.3. Параметры операционных усилителей
- •11.4. Амплитудно и фазочастотные характеристики оу
- •11.5. Устройство операционных усилителей
- •11.6. Оу общего применения
- •11.7. Инвертирующий усилитель
- •11.8. Неинвертирующий усилитель
- •11.9. Суммирующие схемы
- •11.9.1. Инвертирующий сумматор
- •11.9.2. Неинвертирующий сумматор
- •11.9.3. Интегрирующий усилитель
- •11.9.4. Дифференцирующий усилитель
- •11.9.5. Логарифмические схемы
- •11.9.6. Антилогарифмирующий усилитель
- •Глава 12 компараторы напряжения
- •Глава 13 Цифро-аналоговые преобразователи
- •13.1. Параметры цап
- •13.2. Устройство цап
- •Глава 14 Аналого-цифровые преобразователи
- •14.1. Параметры ацп
- •14.2. Классификация ацп
- •14.3. Ацп последовательного приближения
- •ЛитературА
2.5. Контактная разность потенциалов
Наличие
ионов примесей в запирающем слое
p–n перехода
создает разность потенциалов
, которую называют потенциальным барьером
или контактной разностью потенциалов.
Значение контактной разности потенциалов
определяется положениями уровней Ферми
в областях n–
и p–типа
. (2.13)
А для нахождения ее величины воспользуемся тем, что ток диффузии уравновешивается током дрейфа одноименных носителей
, (2.14)
. (2.15)
Учитывая, что коэффициент диффузии связан с подвижностью носителей заряда соотношением Эйнштейна
, (2.16)
где
величину
–
называют тепловым потенциалом
,
из (2.15) получим
. (2.17)
Интегрируя это выражение и используя условие (2.13), получим выражение для контактной разности потенциалов
. (2.18)
Контактная разность потенциалов зависит:
1. От ширины запрещенной зоны полупроводника. При одинаковых концентрациях примесей она выше у полупроводников с большей шириной запрещенной зоны.
2. От концентрации примесей в смежных областях полупроводника. При их увеличении контактная разность потенциалов возрастает.
3. От температуры полупроводника. При ее увеличении контактная разность потенциалов уменьшается.
2.6. Прямое включение p–n перехода
При
подключении к p–n переходу
внешнего электрического поля динамическое
равновесие токов нарушается. Поведение
p–n
перехода зависит при этом от полярности
приложенного напряжения. Если внешнее
напряжение приложено навстречу контактной
разности потенциалов, то такое включение
p–n
перехода называют прямым (рис. 2.5,а).
Внешнее (прямое) напряжение почти
полностью падает на p–n
переходе, сопротивление которого во
много раз выше сопротивления p–
и n–областей.
С увеличением прямого напряжения высота
потенциального барьера уменьшается
.
Основные носители областей полупроводника,
приближаясь к p–n переходу,
частично компенсируют объемные
пространственные заряды, уменьшая тем
самым ширину запирающего слоя и его
сопротивление (рис. 2.5,б).
В цепи протекает электричес
кий
ток, при этом диффузионная составляющая
тока через переход увеличивается, а
дрейфовая – уменьшается.
При
толщина p–n
перехода стремится к нулю и при дальнейшем
увеличении
запирающий слой исчезает. Вследствие
чего электроны и дырки (основные носители
заряда в n–
и p–областях)
начинают свободно диффундировать в
смежные области полупроводника.
Увеличение диффузионной составляющей
тока через p–n
переход при неизменной дрейфовой
составляющей приводит к нарушению
термодинамического равновесия
.
Через переход протекает ток, который называется прямым.
Процесс переноса носителей заряда через прямосмещенный электронно–дырочный переход в область полупроводника, где они становятся неосновными носителями, называется инжекцией. Часто прямой ток называют током инжекции.
В несимметричном p–n переходе, когда концентрация электронов в n–области во много раз больше концентрации дырок в p–области, диффузионный поток электронов во много раз превышает поток дырок и ими можно пренебречь. В данном случае имеет место односторонняя инжекция электронов. Область, из которой происходит инжекция, называют эмиттером, а область, в которую инжектируются носители, – базой.
Неравновесные неосновные носители зарядов диффундируют в глубь полупроводника и нарушают его электронейтральность. Восстановление электронейтральности происходит за счет поступления носителей заряда от внешнего источника взамен ушедших к p–n переходу и исчезнувших в результате рекомбинации. Это приводит к появлению электрического тока во внешней цепи – прямого тока.