- •Техническая Электроника
- •Оглавление
- •Предисловие
- •Введение
- •Глава 1 пассивные компоненты электронных устройств
- •1.1. Резисторы
- •Числовые коэффициенты первых трех рядов
- •Допустимые отклонения сопротивлений
- •Основные параметры резисторов
- •1.1.1. Система условных обозначений и маркировка резисторов
- •Специальные резисторы
- •1.2. Конденсаторы
- •1.2.1. Система условных обозначений конденсаторов
- •1.2.2. Параметры постоянных конденсаторов
- •1.2.3. Конденсаторы переменной ёмкости
- •1.3. Катушки индуктивности
- •Параметры катушек индуктивности
- •Глава 2 полупроводниковые диоды
- •2.1. Физические основы полупроводниковых приборов
- •2.2. Примесные полупроводники
- •2.3. Электронно-дырочный переход
- •2.4. Физические процессы в p–n переходе
- •2.5. Контактная разность потенциалов
- •2.6. Прямое включение p–n перехода
- •2.7. Обратное включение p–n перехода
- •2.8. Вольт–амперная характеристика p–n перехода
- •2.9. Пробой p–n перехода
- •2.10. Емкостные свойства p–n перехода
- •2.11. Полупроводниковые диоды
- •Система обозначения полупроводниковых диодов
- •2.12. Выпрямительные диоды
- •Параметры выпрямительных диодов
- •2.13. Стабилитроны
- •Параметры стабилитрона
- •2.14. Варикапы
- •Параметры варикапов
- •2.15. Импульсные диоды
- •Параметры импульсных диодов
- •2.15.1. Диоды с накоплением заряда и диоды Шотки
- •2.16. Туннельные диоды
- •Параметры туннельных диодов
- •2.17. Обращенные диоды
- •Глава 3 биполярные транзисторы
- •3.1. Режимы работы биполярного транзистора
- •3.2. Принцип действия транзистора
- •3.3. Токи в транзисторе
- •3.4. Статические характеристики
- •3.4.1. Статические характеристики в схеме с об входные характеристики
- •Выходные характеристики
- •Характеристики прямой передачи
- •Характеристики обратной связи
- •3.5. Статические характеристики транзистора в схеме с оэ
- •3.6. Малосигнальные параметры Дифференциальные параметры транзистора
- •Система z–параметров.
- •Система y–параметров
- •Система h–параметров
- •Определение h–параметров по статическим характеристикам
- •3.7. Малосигнальная модель транзистора
- •3.8. Моделирование транзистора
- •3.9. Частотные свойства транзисторов
- •3.10. Параметры биполярных транзисторов
- •Глава 4 полевые транзисторы
- •4.1. Полевой транзистор с управляющим p-n переходом
- •Статические характеристики
- •4.2. Полевые транзисторы с изолированным затвором
- •4.2.2. Статические характеристики мдп-транзистора с
- •4.3. Полевые транзисторы со встроенным каналом
- •4.4. Cтатические характеристики транзистора со
- •4.5. Cпособы включения полевых транзисторов
- •4.6. Полевой транзистор как линейный четырехполюсник
- •4.7. Эквивалентная схема и частотные свойства
- •4.8. Основные параметры полевых транзисторов
- •Глава 5 полупроводниковые переключающие приборы
- •5.1. Диодный тиристор
- •5.2. Триодный тиристор
- •5.3. Симметричные тиристоры (симисторы)
- •5.4. Параметры тиристоров
- •Глава 6 электронно-лучевые приборы
- •6.1. Электростатическая система фокусировки луча
- •6.2. Электростатическая отклоняющая система
- •6.3. Трубки с магнитным управлением электронным лучом
- •6.4. Экраны электронно-лучевых трубок
- •6.5. Система обозначения электронно-лучевых трубок
- •6.6. Осциллографические трубки
- •6.7. Индикаторные трубки
- •6.8. Кинескопы
- •6.9. Цветные кинескопы
- •Глава 7 элементы и устройства оптоэлектроники
- •7.1. Источники оптического излучения
- •7.2. Характеристики светодиодов
- •7.3. Основные параметры светодиодов
- •7.4. Полупроводниковые приемники излучения
- •7.5. Фоторезисторы
- •7.6. Характеристики фоторезистора
- •7.7. Параметры фоторезистора
- •7.8. Фотодиоды
- •7.9. Характеристики и параметры фотодиода
- •7.10. Фотоэлементы
- •7.11. Фототранзисторы
- •7.12. Основные характеристики и параметры фототранзисторов
- •7.13. Фототиристоры
- •7.14. Оптопары
- •7.15. Входные и выходные параметры оптопар
- •7.16. Жидкокристаллические индикаторы
- •Параметры жки
- •Глава 8 элементы интегральных микросхем
- •8.1. Пассивные элементы интегральных микросхем
- •8.1.1. Резисторы
- •8.1.2. Конденсаторы
- •8.1.3. Пленочные конденсаторы
- •8.2. Биполярные транзисторы
- •8.3. Диоды полупроводниковых имс
- •8.4. Биполярные транзисторы с инжекционным питанием
- •8.5. Полупроводниковые приборы c зарядовой связью
- •Применение пзс
- •Параметры элементов пзс
- •Глава 9 основы цифровой техники
- •9.1. Электронные ключевые схемы
- •9.2. Ключи на биполярном транзисторе
- •9.3. Ключ с барьером Шотки
- •9.4. Ключи на мдп транзисторах
- •9.5. Ключ на комплементарных транзисторах
- •9.6. Алгебра логики и основные её законы
- •9.7. Логические элементы и их классификация
- •Классификация ис по функциональному назначению
- •Классификация ис по функциональному назначению
- •9.8. Базовые логические элементы цифровых
- •9.9. Диодно–транзисторная логика
- •9.10. Транзисторно–транзисторная логика (ттл)
- •9.11. Микросхемы ттл серий с открытым коллектором
- •9.12. Правила схемного включения элементов
- •9.13. Эмиттерно–связанная логика
- •9.14. Интегральная инжекционная логика (и2л)
- •9.15. Логические элементы на мдп-транзисторах
- •9.16. Параметры цифровых ис
- •9.17. Триггеры
- •Параметры триггеров
- •9.18. Мультивибраторы
- •9.18.1. Мультивибраторы на логических интегральных элементах
- •9.18.2. Автоколебательный мультивибратор с
- •9.18.3. Автоколебательные мультивибраторы с
- •9.18.4. Ждущие мультивибраторы
- •Глава 10 аналоговые устройства
- •10.1. Классификация аналоговых электронных устройств
- •10.2. Основные технические показатели и характеристики аналоговых устройств
- •10.3. Методы обеспечения режима работы транзистора в каскадах усиления
- •10.3.1. Схема с фиксированным током базы
- •10.3.2. Схема с фиксированным напряжением база–эмиттер
- •10.3.3. Схемы с температурной стабилизацией
- •10.4. Стабильность рабочей точки
- •10.5. Способы задания режима покоя в усилительных
- •10.6. Обратные связи в усилителях
- •10.6.1. Последовательная обратная связь по напряжению
- •10.6.2. Последовательная обратная связь по току
- •10.7. Режимы работы усилительных каскадов
- •10.8. Работа активных элементов с нагрузкой
- •10.9. Усилительный каскад с общим эмиттером
- •10.10. Усилительный каскад по схеме с общей базой
- •10.11. Усилительный каскад с общим коллектором
- •10.12. Усилительные каскады на полевых транзисторах
- •10.12.1. Усилительный каскад с ои
- •10.12.2. Усилительный каскад с общим стоком
- •10.13. Усилители постоянного тока
- •Глава 11 Дифференциальные и операционные усилители
- •11.1. Дифференциальные усилители
- •11.2. Операционные усилители
- •11.3. Параметры операционных усилителей
- •11.4. Амплитудно и фазочастотные характеристики оу
- •11.5. Устройство операционных усилителей
- •11.6. Оу общего применения
- •11.7. Инвертирующий усилитель
- •11.8. Неинвертирующий усилитель
- •11.9. Суммирующие схемы
- •11.9.1. Инвертирующий сумматор
- •11.9.2. Неинвертирующий сумматор
- •11.9.3. Интегрирующий усилитель
- •11.9.4. Дифференцирующий усилитель
- •11.9.5. Логарифмические схемы
- •11.9.6. Антилогарифмирующий усилитель
- •Глава 12 компараторы напряжения
- •Глава 13 Цифро-аналоговые преобразователи
- •13.1. Параметры цап
- •13.2. Устройство цап
- •Глава 14 Аналого-цифровые преобразователи
- •14.1. Параметры ацп
- •14.2. Классификация ацп
- •14.3. Ацп последовательного приближения
- •ЛитературА
2.2. Примесные полупроводники
Если в кристалл германия или кремния добавить примесь элементов третьей или пятой групп таблицы Менделеева, то такой полупроводник называется примесным. Примеси могут быть донорного и акцепторного типа.
Примесный атом, создающий в запрещенной зоне энергетический уровень, занятый в невозбужденном состоянии электронами и отдающий в возбужденном состоянии электрон в зону проводимости, называют донором.
Примесный атом, создающий в запрещенной зоне энергетический уровень свободный от электронов в невозбужденном состоянии и способный захватить электрон из валентной зоны при возбуждении, создавая дырки в валентной зоне, называют акцептором.
Рассмотрим образование примесных полупроводников.
При внесении в предварительно очищенный кремний, германий примеси пятивалентного элемента – донора (фосфор P, сурьма Sb, мышьяк As) атомы примеси замещают основные атомы в узлах кристаллической решетки (рис. 2.2,а).
При этом четыре из пяти валентных электронов атома примеси образуют ковалентные связи с четырьмя соседними атомами полупроводника. Пятый электрон оказывается избыточным (рис. 2.2,б).
Энергия
ионизации донорных атомов значительно
меньше энергии ионизации собственных
полупроводников. Поэтому при комнатной
температуре избыточные электроны
примеси возбуждаются и переходят в зону
проводимости. Атомы примесей, потерявшие
избыточный электрон, становятся
положительными ионами. Количество
электронов Nд,
переходящих под действием тепловой
энергии в зону проводимости с донорного
уровня Wд,
значительно превышает количество
электронов ni,
переходящих в зону проводимости из
валентной зоны в процессе генерации
пар электрон–дырка. Поэтому можно
считать, что концентрация электронов
проводимости полностью определяется
концентрацией донорной примеси
,
а концентрация дырок составляет
. (2.5)
Концентрация дырок в донорном полупроводнике значительно ниже, чем в собственном полупроводнике. В связи с этим дырки pn являются неосновными носителями, а электроны nn –основными носителями. Поэтому донорный полупроводник называется электронным полупроводником или полупроводником n-типа.
При добавлении в кристалл германия или кремния примеси трехвалентного элемента – акцептора (галлий Ga, индий In, бор B) атомы примеси замещают в узлах кристаллической решетки атомы полупроводника. Для образования четырех ковалентных связей не хватает одного валентного электрона атомов примеси (рис. 2.3,а).
Достаточно небольшой внешней энергии, чтобы электроны из верхних уровней валентной зоны переместились на уровень примеси, образовав недостающие ковалентные связи (рис. 2.3,б).
При этом в валентной зоне появляются избыточные уровни (дырки), которые участвуют в создании электрического тока. За счет ионизации атомов исходного материала из валентной зоны часть электронов попадают в зону проводимости. Число дырок в акцепторном полупроводнике превышает число электронов
,
где Nа – концентрация атомов акцепторной примеси, дырки pp являются основными носителями, а электроны np – неосновными. Полупроводники с акцепторной примесью носят название дырочных или полупроводников p-типа.
