Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Posobie_Teoria_veroyatnostey.doc
Скачиваний:
20
Добавлен:
26.09.2019
Размер:
1.48 Mб
Скачать

4.1. Понятие случайной величины

Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед не известное и зависящее от случайных причин, которые заранее не могут быть учтены.

Пример 4.1. Расстояние, которое пролетит снаряд при выстреле из орудия, есть случайная величина. Действительно, расстояние зависит не только от установки прицела, но и от многих других причин (силы и направления ветра, температуры и т. д.), которые не могут быть полностью учтены. Возможные значения этой величины принадлежат некоторому промежутку (а, b).

Пример 4.2. Число родившихся мальчиков среди ста новорожденных есть случайная величина, которая имеет следующие возможные значения: 0, 1, 2, ..., 100.

Будем обозначать случайные величины прописными буквами X, Y, Z, а их возможные значения – соответствующими строчными буквами.

Пример 4.3. Если случайная величина X имеет три возможных значения, то они будут обозначены так: х1, х2, х3.

4.2. Виды случайных величин.

В примере 4.2 случайная величина X могла принять одно из следующих возможных значений: 0, 1, 2, . . ., 100. Эти значения отделены одно от другого промежутками, в которых нет возможных значений X. Таким образом, в этом примере случайная величина принимает отдельные, изолированные возможные значения. В примере 4.1 случайная величина могла принять любое из значений промежутка (а, b). Здесь нельзя отделить одно возможное значение от другого промежутком, не содержащим возможных значений случайной величины.

Уже из сказанного можно заключить о целесообразности различать случайные величины, принимающие лишь отдельные, изолированные значения, и случайные величины, возможные значения которых сплошь заполняют некоторый промежуток.

Дискретной (прерывной) называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Очевидно, число возможных значений непрерывной случайной величины бесконечно.

4.3. Закон распределения вероятностей дискретной случайной величины

На первый взгляд может показаться, что для задания дискретной случайной величины достаточно перечислить все ее возможные значения. В действительности это не так: случайные величины могут иметь одинаковые перечни возможных значений, а вероятности их — различные. Поэтому для задания дискретной случайной величины недостаточно перечислить все возможные ее значения, нужно еще указать их вероятности.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями х1, х2, х3, … и их вероятностями р1, р2, р3, ….

Его можно задать таблично, аналитически (в виде формулы) и графически.

При табличном задании закона распределения дискретной случайной величины первая строка таблицы содержит возможные значения х1, х2, х3, … , а вторая — их вероятности р1, р2, р3, …:

Х

х1

х2

х3

хп

Р

р1

р2

р3

рп

при этом

Пример 4.4. В денежной лотерее выпущено 100 билетов. Разыгрывается один выигрыш в 5000000 руб. и десять выигрышей по 1000000 руб. Найти закон распределения случайной величины X — стоимости возможного выигрыша для владельца одного лотерейного билета.

Решение.

Напишем возможные значения X: х1 = 0, х2 = 1000000, х3 = 5000000.

Вероятности этих возможных значений таковы: р3 = 0,01, р2 = 0,1, р1 = 1 – ( р2 + р3)=0,89.

Напишем искомый закон распределения:

Х

0

1000000

5000000

Р

0,89

0,1

0,01

Контроль: 0,01 + 0,1 + 0,89 = 1.

Для наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки (хi, рi), а затем соединяют их отрезками прямых.

Полученную фигуру называют многоугольником (полиномом) распределения.

Пример 4.5. Построить многоугольник распределения по условию примера 4.4.

Построение:

Возьмем на плоскости (х, р) точки (0; 0,89), (1000000; 0,1), (5000000; 0,01).Соединив последовательно эти точки прямолинейными отрезками, получим искомый многоугольник распредеения:

0,89

Рис.4.1. Многоугольник распределения

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]