Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Priklad_2_kurs_2_semestr_otvety.doc
Скачиваний:
9
Добавлен:
26.09.2019
Размер:
321.02 Кб
Скачать

28.Сформулировать теорему о связи решений исходной и вспомогательной задач при решении задачи линейного программирования методом искусственного базиса.

Метод искусственного базиса применяется к решению задач линейного программирования в общем случае, когда система ограничений не имеет предпочитаемого вида.

Пусть требуется минимизировать

(1) при ограничениях:

(2)

. (3)

К данной задаче ЛП непосредственно нельзя применить симплексный метод, т.к. система (2) не имеет предпочитаемого вида, хотя правые части всех ее уравнений можно считать неотрицательными. Поэтому к левой части каждого уравнения системы (2) добавим по одной искусственной неотрицательной неизвестной и образуем следующую систему m линейных уравнений с n+m неизвестными:

(4)

где (5)

Очевидно, в системе (4) неизвестные образуют базисный набор, который принято называть искусственным. Кроме того, образуем искусственную линейную форму: (6) и сформулируем следующую вспомогательную задачу линейного программирования: минимизировать линейную форму (6) при линейных ограничениях (4) и (5).

Для решения вспомогательной задачи можно применить симплексный метод, так как система (4) имеет предпочитаемый вид, искусственные неизвестные являются базисными, а правые части всех уравнений неотрицательны. В процессе решения вспомогательной задачи система уравнений (4) будет подвергаться симплексным преобразованиям, в результате которых искусственные базисные неизвестные будут переходить в число свободных, а в базисный набор будут постепенно включаться исходные неизвестные. На некотором этапе процесса решения вспомогательной задачи система уравнений (4) примет такой предпочитаемый вид, что соответствующее базисное решение будет оптимальным решением этой задачи. При этом минимальное значение целевой функции может быть или положительным, или равным нулю, так как функция представляет сумму неотрицательных переменных.

Если Smin<0, то исходная задача не имеет решения ввиду противоречивости условий (2) и (3). Действительно, если допустить, что система уравнений (2) имеет неотрицательное решение (α12,...,αn), то вспомогательная задача будет иметь решение (α12,...,αn,0,0,…,0) для которого S=0, что противоречит предположению.

Если же S=0, то возможна дальнейшая минимизация.

29.Доказать, что если при решении задачи линейного программирования:

симплексным методом в качестве начального базиса выбирают базис из дополнительных переменных, для которых , то оценки для всех небазисных (свободных) переменных будут равны , а соответствующее значение целевой функции .

Это следует из правила выч.дв.оценок. Точнее, это следует из их определения: это коэф-ты ц.ф. выражаются через свободные неизвестные, которыми и являются в данном случае все основные переменные задачи

30.Для задачи линейного программирования:

получить выражение целевой функции z через свободные переменные общего решения системы ограничений

C3 П3 Н0 Х1 Х2 Х3 Х4 Х5 Х6 Х7

3 Х2 1

0 Х6 1

5 Х3 1

-z+1400 Двойственные оценки

Коэффициент выражения ц.ф-и через свободные переменные – это двойственные оценки (с точностью до знака)

Правило: столбец С3 * столбец матрицы, а затем вычетается верхнее значение наверху.

Док-во: правила вычисления двойственных оценок. Без ограничений общности, базисными стали Х1, Х2, Х3.

C3 П3 Н0 Х1 Х2 Х3 Х4 Х5 Х6 Х7

Х1 1 S

Х2 1

Х3 1

Двойственные оценки

F = CX= C1X1+ C2X2= C1*X1 + C2*X2= C1(H-SX2) + C2( H2) = C1H + (-C1S + C2)X2= Z0+(-C1S + C2)X2=Z0-(C1S- C2)X2=Z

Z= Z0-(C1S- C2)X2

40=X1+ 7X4+2X1

H=X1+SX2→X1=H-SX2

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]