
- •Какая система векторов a1,…..An называется линейно зависимой и линейно независимой? Система единичных векторов ортогонального n-мерного пространства линейно зависима или линейно независима?
- •2.В каком случае вектор b можно назвать линейной комбинацией векторов a1 … an ?
- •3.Ввести необходимые векторы и матрицы и записать в векторно-матричной форме следующую задачу (дана задача лп, записанная в обычном виде).
- •4.Дайте определение матрицы, обратной квадратной матрице а. Какое условие является необходимым и достаточным условием существования обратной матрицы?
- •7)Дайте определения: разрешающая неизвестная, разрешающее уравнение, базисная и свободная переменная, базисное и общее решение
- •9) Дайте определение ранга матрицы размером m*n. Определите ранг матрицы (матрица задана).
- •10) Дайте определения: Совместная и несовместная слау,
- •11)Действия над матрицами: сумма, произведение, транспонирование. Свойства и формулы для расчета элементов.
- •12)Единичная матрица: определение, формулы для элементов
- •13) Обратная матрица: определение, условия существования обратной матрицы.
- •14) Постановка линейной производственной задачи, смысл переменных, векторов и матриц, допустимый и оптимальный план, математическая модель
- •15) Постановка общей задачи математического программирования. Основные понятия
- •16) Вектор-градиент, линия уровня, область допустимых решений в задаче лп. Геометрическая интерпретация задачи линейного программирования.
- •17) Многошаговые процессы решений в экономике. Суть метода динамического программирования. Параметр состояния и функция состояния системы, рекуррентные соотношения.
- •18) Матричные игры с нулевой суммой, смысл коэффициентов платежной матрицы, примеры матричных игр.
- •19) Графическое решение задачи целочисленного лп
- •25.В каком случае задача оптимального производственного планирования не имеет оптимального плана? Ответ обосновать.
- •26.В каком случае при решении задачи линейного программирования симплекс-методом значения линейной функции двух последовательных планов могут совпасть? Ответ обосновать
- •27.Сформулировать и доказать условие неограниченности целевой функции на множестве допустимых решений при решении задачи линейного программирования симплекс-методом.
- •28.Сформулировать теорему о связи решений исходной и вспомогательной задач при решении задачи линейного программирования методом искусственного базиса.
- •29.Доказать, что если при решении задачи линейного программирования:
- •30.Для задачи линейного программирования:
- •31.Правила выбора ключевого столбца и строки при решении задачи лп симплексным методом, последствия неправильного выбора
- •32.Введение балансовых переменных в систему ограничений задачи лп: цель и правило введения
- •33.Введение искусственных переменных в систему ограничений задачи лп при решении задачи лп методом искусственного базиса: цель и правило введения
- •34.В каком случае процесс решения задачи лп симплекс-методом является конечным?
- •35.В каких задачах применяется симплекс-метод?
- •36.Что представляет собой симплексная таблица?
- •37.Запишите симметричную пару двойственных задач линейного программирования.
- •38.Сформулируйте правила составления задачи, двойственной к данной задаче линейного программирования с ограничениями — неравенствами.
- •39.Матричная запись пары двойственных задач лп (симметричная пара задач с ограничениями-неравенствами и несимметричная пара, где в одной из задач ограничения имеют вид равенств).
- •40.Сформулировать и доказать основное неравенство теории двойственности линейного программирования.
- •41.Сформулировать и доказать теорему о достаточном условии оптимальности решений пары двойственных задач линейного программирования.
- •42.Сформулировать первую основную теорему двойственности. В чем состоит экономическое содержание первой основной теоремы двойственности?
- •43.Сформулировать и доказать вторую основную теорему двойственности. В чем состоит экономическое содержание второй основной теоремы двойственности?
- •44.Сформулировать и доказать третью основную теорему двойственности. В чем состоит экономическое содержание третьей основной теоремы двойственности?
- •45.В чем состоит условие устойчивости двойственных оценок?
- •46.Сформулируйте задачу о расшивке узких мест производства и постройте ее математическую модель.
- •47.Постановка и математическая модель замкнутой транспортной задачи, число базисных неизвестных. Записать основные свойства этой модели.
- •50.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу северо-западного угла.
- •51.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу минимального элемента в матрице тарифов.
- •54.Записать определение цикла пересчета в транспортной таблице. Использование цикла пересчета для получения нового (улучшенного) базисного решения.
- •55.Записать алгоритм решения транспортной задачи (перечислить по порядку этапы решения). Обосновать конечность метода потенциалов решения транспортной задачи.
- •56.Объяснить смысл перевозок от фиктивного поставщика или к фиктивному потребителю в оптимальном решении транспортной задачи.
- •57.Что такое целочисленное линейное программирование? Допустимое множество задачи цлп.
- •58.Что такое параметрическое линейное программирование? Где может находиться параметр?
- •59.Что такое многокритериальная задача?
- •60.Что такое рекорд в методе ветвей и границ?
- •61.Приведите пример задачи целочисленного линейного программирования
- •62.Приведите пример задачи параметрического линейного программирования.
- •63.Приведите пример многокритериальной задачи
- •64.Сформулируйте условие окончания ветвления при решении задач методом виг.
- •65.Что такое решение, оптимальное по Парето в многокритериальной задаче.
- •66.Объясните, почему метод виг принадлежит к методам отсечения?
- •67.Почему нельзя решать задачу целочисленного лп, решив ее сначала как обычную задачу лп без учета целочисленности, а затем округлив полученное решение?
- •68.Что такое решение, оптимальное по Парето, в многокритериальной оптимизации?
- •69.Описать метод ветвей и границ
- •70.Метод динамического программирования, функция состояния, уравнение Беллмана
- •71. Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи.
- •76.В чем отличие «условий неопределенности» от «вероятностных условий». Что такое полная неопределенность и частичная неопределенность?
- •77.Что такое платежная матрица и матрица рисков, экономический смысл платежной матрицы
- •78.Как по платежной матрице составить матрицу рисков?
- •83.Как находится риск финансовой операции как среднее квадратическое?
- •84.Что такое доминирование финансовых операций?
- •86.Каков экономический смысл среднего ожидаемого дохода финансовой операции? Формула для его расчета
- •87. Верхняя и нижняя цена игры в матричной игре в чистых стратегиях, их нахождение.
- •88. Оптимальные стратегии в матричной игре в чистых стратегиях, условие их существования, седловая точка матрицы.
12)Единичная матрица: определение, формулы для элементов
Матрица – это прямоугольная таблица чисел, содержащая m строк и n столбцов.
a11 а12 …а1n
А= a21 а22 …а2n или кратко А=(aij)
…………..
am1 аm2 …аmn
Если т=п, то матрица называется квадратной матрицей n-го порядка. Кв. матрица наз треугольной, если все ее элементы, стоящие над или под главной диагональю, равны нулю. Кв. матрица называется диагональной, если все ее эл-ты, стоящие на главной диагонали, отличны от нуля, а остальные равны нулю. Диагональная матрица наз единичной, если у нее по главной диагонали стоят 1. Единичную матрицу принято обозначать буквой Е:
13) Обратная матрица: определение, условия существования обратной матрицы.
Пусть задана квадратная матрица А. Если существует матрица В, такая что А*В=Е, то говорят что матрица В является обратной по отношению к матрице А: В=А-1, А*А-1=Е.
Свойства:
1)Обратная и исходная матрицы перестановочны и матрица, обратная обратной, совпадает с исходной: А*А-1=А-1*А=Е.
2)Единственность матрицы: если для данной матрицы обратная мат сущ-т, то она только одна.
Только квадратная матрица может иметь обратную.
Для нахождения обратной матрицы можно использовать следующий алгоритм:
Смотрим, квадратная ли матрица: если нет, обратной матрицы не существует; если квадратная, переходим к след. пункту;
Вычисляем определитель ∆А; если он равен 0, обратной матрицы не существует; если он не равен 0, переходим к след. пункту;
Вместо каждого элемента матрицы ставим его алгебраическое дополнение (алгебраическим дополнением некоторого элемента определителя называется минор этого элемента, умноженный на (-1)s, где s – сумма номеров строки и столбца, на пересечении которых расположен этот элемент);
Полученную матрицу транспонируем;
Каждый элемент полученной матрицы делим на определитель исходной матрицы и получаем матрицу, обратную данной.
14) Постановка линейной производственной задачи, смысл переменных, векторов и матриц, допустимый и оптимальный план, математическая модель
Лин производ зад – это задача о рац испол производ мощностей. Смысл - предпр выпускает n видов изделия на m видах оборуд. А –матрица издержек, aij - издержки, затраты на изгот ед j-ого изделия на i-том оборуд. Вектор В – это объем ресурсов, bi,- имеющееся количество i-го ресурса, а вектор С – прибыль от реализации единицы изделия каждого вида, сj - прибыль на единицу j-й продукции, хj - искомое количество единиц j-й продукции. Матем модель: задача -найти производ программу X = (x1, x2, x3, x4), максимиз прибыль. По составленным неравенствам рисуем на графике область допустимых решений. Допустимое решение – набор x1, x2, x3, x4, который удовлет усл зад и каждая компонента которого неотрицателна. рисуем линии уровня функции прибыли, которые перпендик вектору-градиенту прибыли. Ищем наибольшее значение функции прибыли в ОДР, координаты этой точки являются оптимальным планом.
15) Постановка общей задачи математического программирования. Основные понятия
Задачу линейного программирования нередко формулируют как задачу минимизации или макси-мизации линейной формы L=c1x1+c2x2+...cnxn (1) при ограничениях x1≥0, x2≥0, ...xn≥0 и
∑ aijxj≤bi, i=1,2,...m1,
∑ aijxj=bi, i= m1+1, m1+2,...m2,
∑ aijxj≥bi, i= m2+1, m2+2,...m.
Такую запись называют общей задачей линейного программирования.
Обозначим через А матрицу системы линейных уравнений:
а11x1 + a12x2 + … a1nxn = b1
а21x1 + a22x2 + … a2nxn = b2 (2)
А = . . . . .
аm1x1 + am2x2 + … amnxn = bm.
Через X и B – матрицы-столбцы (векторы) неизвестных и свободных членов:
,
,
а также введем в рассмотрение n-мерный вектор C = (с1 … сn), компонентами которого служат коэффициенты линейной формы (1), и n-мерный нуль-вектор 0(0, 0, …, 0). Тогда линейную форму можно рассматривать как скалярное произведение L=CX (3), систему линейных уравнений (2) заменить одним матричным уравнением AX=B (4), а условия x1≥0, x2≥0, ...xn≥0 записать в виде X≥0 (5). Поэтому часто основную задачу линейного программирования кратко записывают как задачу минимизации линейной формы (3) при линейных ограничениях (4) и (5).