- •Какая система векторов a1,…..An называется линейно зависимой и линейно независимой? Система единичных векторов ортогонального n-мерного пространства линейно зависима или линейно независима?
- •2.В каком случае вектор b можно назвать линейной комбинацией векторов a1 … an ?
- •3.Ввести необходимые векторы и матрицы и записать в векторно-матричной форме следующую задачу (дана задача лп, записанная в обычном виде).
- •4.Дайте определение матрицы, обратной квадратной матрице а. Какое условие является необходимым и достаточным условием существования обратной матрицы?
- •7)Дайте определения: разрешающая неизвестная, разрешающее уравнение, базисная и свободная переменная, базисное и общее решение
- •9) Дайте определение ранга матрицы размером m*n. Определите ранг матрицы (матрица задана).
- •10) Дайте определения: Совместная и несовместная слау,
- •11)Действия над матрицами: сумма, произведение, транспонирование. Свойства и формулы для расчета элементов.
- •12)Единичная матрица: определение, формулы для элементов
- •13) Обратная матрица: определение, условия существования обратной матрицы.
- •14) Постановка линейной производственной задачи, смысл переменных, векторов и матриц, допустимый и оптимальный план, математическая модель
- •15) Постановка общей задачи математического программирования. Основные понятия
- •16) Вектор-градиент, линия уровня, область допустимых решений в задаче лп. Геометрическая интерпретация задачи линейного программирования.
- •17) Многошаговые процессы решений в экономике. Суть метода динамического программирования. Параметр состояния и функция состояния системы, рекуррентные соотношения.
- •18) Матричные игры с нулевой суммой, смысл коэффициентов платежной матрицы, примеры матричных игр.
- •19) Графическое решение задачи целочисленного лп
- •25.В каком случае задача оптимального производственного планирования не имеет оптимального плана? Ответ обосновать.
- •26.В каком случае при решении задачи линейного программирования симплекс-методом значения линейной функции двух последовательных планов могут совпасть? Ответ обосновать
- •27.Сформулировать и доказать условие неограниченности целевой функции на множестве допустимых решений при решении задачи линейного программирования симплекс-методом.
- •28.Сформулировать теорему о связи решений исходной и вспомогательной задач при решении задачи линейного программирования методом искусственного базиса.
- •29.Доказать, что если при решении задачи линейного программирования:
- •30.Для задачи линейного программирования:
- •31.Правила выбора ключевого столбца и строки при решении задачи лп симплексным методом, последствия неправильного выбора
- •32.Введение балансовых переменных в систему ограничений задачи лп: цель и правило введения
- •33.Введение искусственных переменных в систему ограничений задачи лп при решении задачи лп методом искусственного базиса: цель и правило введения
- •34.В каком случае процесс решения задачи лп симплекс-методом является конечным?
- •35.В каких задачах применяется симплекс-метод?
- •36.Что представляет собой симплексная таблица?
- •37.Запишите симметричную пару двойственных задач линейного программирования.
- •38.Сформулируйте правила составления задачи, двойственной к данной задаче линейного программирования с ограничениями — неравенствами.
- •39.Матричная запись пары двойственных задач лп (симметричная пара задач с ограничениями-неравенствами и несимметричная пара, где в одной из задач ограничения имеют вид равенств).
- •40.Сформулировать и доказать основное неравенство теории двойственности линейного программирования.
- •41.Сформулировать и доказать теорему о достаточном условии оптимальности решений пары двойственных задач линейного программирования.
- •42.Сформулировать первую основную теорему двойственности. В чем состоит экономическое содержание первой основной теоремы двойственности?
- •43.Сформулировать и доказать вторую основную теорему двойственности. В чем состоит экономическое содержание второй основной теоремы двойственности?
- •44.Сформулировать и доказать третью основную теорему двойственности. В чем состоит экономическое содержание третьей основной теоремы двойственности?
- •45.В чем состоит условие устойчивости двойственных оценок?
- •46.Сформулируйте задачу о расшивке узких мест производства и постройте ее математическую модель.
- •47.Постановка и математическая модель замкнутой транспортной задачи, число базисных неизвестных. Записать основные свойства этой модели.
- •50.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу северо-западного угла.
- •51.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу минимального элемента в матрице тарифов.
- •54.Записать определение цикла пересчета в транспортной таблице. Использование цикла пересчета для получения нового (улучшенного) базисного решения.
- •55.Записать алгоритм решения транспортной задачи (перечислить по порядку этапы решения). Обосновать конечность метода потенциалов решения транспортной задачи.
- •56.Объяснить смысл перевозок от фиктивного поставщика или к фиктивному потребителю в оптимальном решении транспортной задачи.
- •57.Что такое целочисленное линейное программирование? Допустимое множество задачи цлп.
- •58.Что такое параметрическое линейное программирование? Где может находиться параметр?
- •59.Что такое многокритериальная задача?
- •60.Что такое рекорд в методе ветвей и границ?
- •61.Приведите пример задачи целочисленного линейного программирования
- •62.Приведите пример задачи параметрического линейного программирования.
- •63.Приведите пример многокритериальной задачи
- •64.Сформулируйте условие окончания ветвления при решении задач методом виг.
- •65.Что такое решение, оптимальное по Парето в многокритериальной задаче.
- •66.Объясните, почему метод виг принадлежит к методам отсечения?
- •67.Почему нельзя решать задачу целочисленного лп, решив ее сначала как обычную задачу лп без учета целочисленности, а затем округлив полученное решение?
- •68.Что такое решение, оптимальное по Парето, в многокритериальной оптимизации?
- •69.Описать метод ветвей и границ
- •70.Метод динамического программирования, функция состояния, уравнение Беллмана
- •71. Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи.
- •76.В чем отличие «условий неопределенности» от «вероятностных условий». Что такое полная неопределенность и частичная неопределенность?
- •77.Что такое платежная матрица и матрица рисков, экономический смысл платежной матрицы
- •78.Как по платежной матрице составить матрицу рисков?
- •83.Как находится риск финансовой операции как среднее квадратическое?
- •84.Что такое доминирование финансовых операций?
- •86.Каков экономический смысл среднего ожидаемого дохода финансовой операции? Формула для его расчета
- •87. Верхняя и нижняя цена игры в матричной игре в чистых стратегиях, их нахождение.
- •88. Оптимальные стратегии в матричной игре в чистых стратегиях, условие их существования, седловая точка матрицы.
76.В чем отличие «условий неопределенности» от «вероятностных условий». Что такое полная неопределенность и частичная неопределенность?
Принять, выработать решение в условиях определенности- это фактически найти экстремум известной функции при установленных ограничениях. Когда же некоторые существенные обстоятельства принятия решений известны не полностью не полностью или случайны, то говорят, что решение принимается в условиях неопределенности. Иными словами, неопределенность- это отрицание определенности. Не все случайное можно измерить вероятностью. Неопределенность- более широкое понятие. Неопределенность того, какой цифрой вверх ляжет игральный кубик, отличается от неопределенности того, каково будет состояние российской экономики через 15 лет. Иначе говоря, уникальные единичные случайные явления связаны с неопределенностью, а массовые случайные явления обязательно допускают некоторые закономерности вероятностного характере.
Предположим, что в рассматриваемой схеме известны вероятности pj того, что реальная ситуация развивается по варианту j. Именно такое положение называется частичной неопределенностью.
77.Что такое платежная матрица и матрица рисков, экономический смысл платежной матрицы
Предположим, что ЛПР рассматривает несколько (i=1,…,m) возможных решений. Ситуация неопределенная, понятно лишь, что наличествует какой-то из вариантов j=1,…,n. Если будет принято i-е решение в j-й ситуации, то фирма, возглавляемая ЛПР, получит доход qij. Матрица Q=|| qij || называется матрицей последствий( возможных решений). Какое же решение нужно принять ЛПР? В ситуации полной неопределенности могут быть высказаны лишь некоторые рекомендации предварительного характера. Они не обязательно будут приняты ЛПР. Многое будет зависеть, например, от его склонности к риску. Но как оценить риск в данной схеме?
Допустим, мы хотим оценить риск, который несет в себе i-е решение. Нам неизвестна реальная ситуация. Но если бы мы ее знали, то выбрали бы наилучшее решение, т.е. приносящее наибольший доход, в j-й ситуации было бы принято решение, дающее доход qj= max{qij}. Значит, принимая i-е решение, мы рискуем получить не qj, а только qij и недобрать rij=qj-qi. Матрица R=|| rij || называется матрицей рисков.
78.Как по платежной матрице составить матрицу рисков?
Пусть матрица последствий есть 5 2 8 4
Q= 2 3 4 12
8 5 3 10
1 4 2 8
Составим матрицу рисков. Имеем
q1= max{qi1}=8, q2=5, q3=8, q4=12
Следовательно, матрица рисков
3 3 0 8
R= 6 2 4 0
0 0 5 2
7 1 6 4
79. Как рекомендуется принять решение по «Вальду»
Правило крайнего пессимизма. Рассматривая i-е решение, будем полагать, что на самом деле ситуация складывается самая плохая, т.е. приносящая самый малый доход
ai
= minj{qij}.Но
теперь среди ai
выберем i0-е
решение с наибольшим aij.
Итак, правило Вальда рекомендует принять
i0-е
решение, такое, что
80.Как рекомендуется принимать решение «по Сэвиджу»?
Правило
минимального риска. При применении
этого правила анализируется матрица
рисков R=||
rij
||. Рассматривавая i-е
решение, будем полагать, что на самом
деле складывается ситуация максимального
риска bi=
max{rij}.
Но теперь выберем i0-е
решение с наименьшим bi0.
Итак, Правило Севиджа рекомендует
принять i0-е
решение, такое, что
81.Как рекомендуется принимать решение «по Гурвицу»?
Взвешивающее
пессимистический и оптимистический
подходы к ситуации. Принимая i-е
решение, при котором достигается max
,
где 0 ≤
ג
≥1. Значение
ג
выбирается из субъективных соображений. Если ג →1, то правило Гурвица приблежается к правилу Вальда, при ג →0 правило Гурвица приблежается к правилу «розового оптимизма».
82.Что такое правило «розового оптимизма»?
( 0 6 5 2 ) ( 6 2 8 22) ( 9 4 3 32) ( -6 -4 -12 10)
ЛПР считает, что для него сложится самая благоприятная ситуация, т.е. он получит самый большой доход в результате своей деятельности ci = max qij. Теперь выберем решение i0 с наибольшим ci0. Итак, правило “розового оптимизма рекомендует принять решение i0 такое, что ci0 = max (max qij). Так, в вышеуказанном примере имеем с1 = 6, с2 = 22, с3 = 32, с4 = 10. Теперь из чисел 6, 22, 32, 10 берем максимальное. Это — 32. Значит, правило “розового оптимизма” рекомендует 3-е решение.
